metadata
base_model: dunzhang/stella_en_1.5B_v5
datasets: []
language: []
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:693000
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: >-
Paracrystalline materials are defined as having short and medium range
ordering in their lattice (similar to the liquid crystal phases) but
lacking crystal-like long-range ordering at least in one direction.
sentences:
- >-
Instruct: Given a web search query, retrieve relevant passages that
answer the query.
Query: Paracrystalline
- >-
Instruct: Given a web search query, retrieve relevant passages that
answer the query.
Query: Øystein Dahle
- >-
Instruct: Given a web search query, retrieve relevant passages that
answer the query.
Query: Makis Belevonis
- source_sentence: >-
Hạ Trạch is a commune ( xã ) and village in Bố Trạch District , Quảng Bình
Province , in Vietnam . Category : Populated places in Quang Binh
Province Category : Communes of Quang Binh Province
sentences:
- >-
Instruct: Given a web search query, retrieve relevant passages that
answer the query.
Query: The Taill of how this forsaid Tod maid his Confessioun to Freir
Wolf Waitskaith
- >-
Instruct: Given a web search query, retrieve relevant passages that
answer the query.
Query: Hạ Trạch
- >-
Instruct: Given a web search query, retrieve relevant passages that
answer the query.
Query: Tadaxa
- source_sentence: >-
The Golden Mosque (سنهرى مسجد, Sunehri Masjid) is a mosque in Old Delhi.
It is located outside the southwestern corner of Delhi Gate of the Red
Fort, opposite the Netaji Subhash Park.
sentences:
- >-
Instruct: Given a web search query, retrieve relevant passages that
answer the query.
Query: Algorithm
- >-
Instruct: Given a web search query, retrieve relevant passages that
answer the query.
Query: Golden Mosque (Red Fort)
- >-
Instruct: Given a web search query, retrieve relevant passages that
answer the query.
Query: Parnaso Español
- source_sentence: >-
Unibank, S.A. is one of Haiti's two largest private commercial banks. The
bank was founded in 1993 by a group of Haitian investors and is the main
company of "Groupe Financier National (GFN)". It opened its first office
in July 1993 in downtown Port-au-Prince and has 50 branches throughout the
country as of the end of 2016.
sentences:
- >-
Instruct: Given a web search query, retrieve relevant passages that
answer the query.
Query: Sky TG24
- >-
Instruct: Given a web search query, retrieve relevant passages that
answer the query.
Query: Ghomijeh
- >-
Instruct: Given a web search query, retrieve relevant passages that
answer the query.
Query: Unibank (Haiti)
- source_sentence: >-
The Tchaikovsky Symphony Orchestra is a Russian classical music orchestra
established in 1930. It was founded as the Moscow Radio Symphony
Orchestra, and served as the official symphony for the Soviet All-Union
Radio network. Following the dissolution of the, Soviet Union in 1991, the
orchestra was renamed in 1993 by the Russian Ministry of Culture in
recognition of the central role the music of Tchaikovsky plays in its
repertoire. The current music director is Vladimir Fedoseyev, who has been
in that position since 1974.
sentences:
- >-
Instruct: Given a web search query, retrieve relevant passages that
answer the query.
Query: Harald J.W. Mueller-Kirsten
- >-
Instruct: Given a web search query, retrieve relevant passages that
answer the query.
Query: Sierra del Lacandón
- >-
Instruct: Given a web search query, retrieve relevant passages that
answer the query.
Query: Tchaikovsky Symphony Orchestra
model-index:
- name: SentenceTransformer based on dunzhang/stella_en_1.5B_v5
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: Unknown
type: unknown
metrics:
- type: cosine_accuracy@1
value: 0.9457912457912457
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.9686868686868687
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.9750841750841751
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9818181818181818
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.9457912457912457
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.3228956228956229
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.195016835016835
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09818181818181818
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.9457912457912457
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.9686868686868687
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.9750841750841751
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9818181818181818
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.9641837379281919
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.9584885895997006
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.9590455638710143
name: Cosine Map@100
- type: cosine_accuracy@1
value: 0.9447811447811448
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.9696969696969697
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.9754208754208754
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9824915824915825
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.9447811447811448
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.32323232323232326
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.19508417508417508
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09824915824915824
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.9447811447811448
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.9696969696969697
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.9754208754208754
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9824915824915825
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.9641053714591453
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.9581715301159749
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.9586773165340671
name: Cosine Map@100
- type: cosine_accuracy@1
value: 0.9447811447811448
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.9673400673400674
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.9720538720538721
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9804713804713805
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.9447811447811448
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.32244668911335583
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.19441077441077437
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09804713804713805
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.9447811447811448
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.9673400673400674
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.9720538720538721
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9804713804713805
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.9628692157043424
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.9572219549997326
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.9577987764578036
name: Cosine Map@100
SentenceTransformer based on dunzhang/stella_en_1.5B_v5
This is a sentence-transformers model finetuned from dunzhang/stella_en_1.5B_v5. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: dunzhang/stella_en_1.5B_v5
- Maximum Sequence Length: 8096 tokens
- Output Dimensionality: 1024 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 8096, 'do_lower_case': False}) with Transformer model: Qwen2Model
(1): Pooling({'word_embedding_dimension': 1536, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Dense({'in_features': 1536, 'out_features': 1024, 'bias': True, 'activation_function': 'torch.nn.modules.linear.Identity'})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'The Tchaikovsky Symphony Orchestra is a Russian classical music orchestra established in 1930. It was founded as the Moscow Radio Symphony Orchestra, and served as the official symphony for the Soviet All-Union Radio network. Following the dissolution of the, Soviet Union in 1991, the orchestra was renamed in 1993 by the Russian Ministry of Culture in recognition of the central role the music of Tchaikovsky plays in its repertoire. The current music director is Vladimir Fedoseyev, who has been in that position since 1974.',
'Instruct: Given a web search query, retrieve relevant passages that answer the query.\nQuery: Tchaikovsky Symphony Orchestra',
'Instruct: Given a web search query, retrieve relevant passages that answer the query.\nQuery: Sierra del Lacandón',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.9458 |
cosine_accuracy@3 | 0.9687 |
cosine_accuracy@5 | 0.9751 |
cosine_accuracy@10 | 0.9818 |
cosine_precision@1 | 0.9458 |
cosine_precision@3 | 0.3229 |
cosine_precision@5 | 0.195 |
cosine_precision@10 | 0.0982 |
cosine_recall@1 | 0.9458 |
cosine_recall@3 | 0.9687 |
cosine_recall@5 | 0.9751 |
cosine_recall@10 | 0.9818 |
cosine_ndcg@10 | 0.9642 |
cosine_mrr@10 | 0.9585 |
cosine_map@100 | 0.959 |
Information Retrieval
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.9448 |
cosine_accuracy@3 | 0.9697 |
cosine_accuracy@5 | 0.9754 |
cosine_accuracy@10 | 0.9825 |
cosine_precision@1 | 0.9448 |
cosine_precision@3 | 0.3232 |
cosine_precision@5 | 0.1951 |
cosine_precision@10 | 0.0982 |
cosine_recall@1 | 0.9448 |
cosine_recall@3 | 0.9697 |
cosine_recall@5 | 0.9754 |
cosine_recall@10 | 0.9825 |
cosine_ndcg@10 | 0.9641 |
cosine_mrr@10 | 0.9582 |
cosine_map@100 | 0.9587 |
Information Retrieval
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.9448 |
cosine_accuracy@3 | 0.9673 |
cosine_accuracy@5 | 0.9721 |
cosine_accuracy@10 | 0.9805 |
cosine_precision@1 | 0.9448 |
cosine_precision@3 | 0.3224 |
cosine_precision@5 | 0.1944 |
cosine_precision@10 | 0.098 |
cosine_recall@1 | 0.9448 |
cosine_recall@3 | 0.9673 |
cosine_recall@5 | 0.9721 |
cosine_recall@10 | 0.9805 |
cosine_ndcg@10 | 0.9629 |
cosine_mrr@10 | 0.9572 |
cosine_map@100 | 0.9578 |
Training Details
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_eval_batch_size
: 4gradient_accumulation_steps
: 4learning_rate
: 2e-05max_steps
: 1500lr_scheduler_type
: cosinewarmup_ratio
: 0.1warmup_steps
: 5bf16
: Truetf32
: Trueoptim
: adamw_torch_fusedgradient_checkpointing
: Truegradient_checkpointing_kwargs
: {'use_reentrant': False}batch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 8per_device_eval_batch_size
: 4per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 4eval_accumulation_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 3.0max_steps
: 1500lr_scheduler_type
: cosinelr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 5log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Truelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Truedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torch_fusedoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Truegradient_checkpointing_kwargs
: {'use_reentrant': False}include_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falsebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | loss | cosine_map@100 |
---|---|---|---|---|
0.0185 | 100 | 0.4835 | 0.0751 | 0.9138 |
0.0369 | 200 | 0.0646 | 0.0590 | 0.9384 |
0.0554 | 300 | 0.0594 | 0.0519 | 0.9462 |
0.0739 | 400 | 0.0471 | 0.0483 | 0.9514 |
0.0924 | 500 | 0.0524 | 0.0455 | 0.9531 |
0.1108 | 600 | 0.0435 | 0.0397 | 0.9546 |
0.1293 | 700 | 0.0336 | 0.0394 | 0.9549 |
0.1478 | 800 | 0.0344 | 0.0374 | 0.9565 |
0.1662 | 900 | 0.0393 | 0.0361 | 0.9568 |
0.1847 | 1000 | 0.0451 | 0.0361 | 0.9578 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.2.0+cu121
- Accelerate: 0.33.0
- Datasets: 2.20.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}