results
This model is a fine-tuned version of pietrocagnasso/bart-paper-titles on the None dataset. It achieves the following results on the evaluation set:
- eval_loss: 1.8363
- eval_rouge1: 0.2932
- eval_rouge2: 0.1496
- eval_rougeL: 0.2387
- eval_rougeLsum: 0.2387
- eval_gen_len: 59.7278
- eval_runtime: 6791.8637
- eval_samples_per_second: 3.975
- eval_steps_per_second: 0.124
- epoch: 2.0
- step: 3375
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
Framework versions
- Transformers 4.44.0
- Pytorch 2.4.0
- Datasets 2.21.0
- Tokenizers 0.19.1
- Downloads last month
- 1
Model tree for Fariman/results
Base model
pietrocagnasso/bart-paper-titles