metadata
library_name: transformers
language:
- lv
license: apache-2.0
base_model: FelixK7/whisper-medium-lv
tags:
- hf-asr-leaderboard
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_16_1
metrics:
- wer
model-index:
- name: Whisper medium LV - Felikss Kleins
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 16.1
type: mozilla-foundation/common_voice_16_1
config: lv
split: None
args: 'config: lv, split: test'
metrics:
- name: Wer
type: wer
value: 9.459716154242761
Whisper medium LV - Felikss Kleins
This model is a fine-tuned version of FelixK7/whisper-medium-lv on the Common Voice 16.1 dataset. It achieves the following results on the evaluation set:
- Loss: 0.2053
- Wer: 9.4597
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 10000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
No log | 0.02 | 200 | 0.1318 | 7.6741 |
0.0445 | 1.0199 | 400 | 0.1527 | 8.4475 |
0.0338 | 2.0199 | 600 | 0.1703 | 9.7148 |
0.0345 | 3.0198 | 800 | 0.1725 | 9.7392 |
0.0311 | 4.0198 | 1000 | 0.1789 | 9.8830 |
0.0311 | 5.0198 | 1200 | 0.1792 | 10.0187 |
0.0288 | 6.0197 | 1400 | 0.1858 | 9.6063 |
0.0237 | 7.0197 | 1600 | 0.1839 | 9.8803 |
0.022 | 8.0196 | 1800 | 0.1847 | 10.2955 |
0.0198 | 9.0196 | 2000 | 0.1878 | 9.8885 |
0.0198 | 10.0195 | 2200 | 0.1909 | 9.9237 |
0.0183 | 11.0195 | 2400 | 0.1948 | 10.1924 |
0.0161 | 12.0194 | 2600 | 0.1951 | 10.4122 |
0.0154 | 13.0193 | 2800 | 0.1952 | 9.9997 |
0.0141 | 14.0193 | 3000 | 0.1972 | 10.1001 |
0.0141 | 15.0192 | 3200 | 0.1976 | 10.1544 |
0.0118 | 16.0192 | 3400 | 0.2014 | 10.4258 |
0.0115 | 17.0191 | 3600 | 0.2021 | 10.6890 |
0.0106 | 18.0191 | 3800 | 0.2005 | 10.1951 |
0.0092 | 19.0191 | 4000 | 0.2022 | 10.4638 |
0.0092 | 20.019 | 4200 | 0.2003 | 10.0947 |
0.0089 | 21.0190 | 4400 | 0.2043 | 9.8776 |
0.0085 | 22.0189 | 4600 | 0.2063 | 10.4719 |
0.0083 | 23.0189 | 4800 | 0.2067 | 10.0540 |
0.0069 | 24.0188 | 5000 | 0.2058 | 9.7908 |
0.0069 | 25.0188 | 5200 | 0.2056 | 10.4583 |
0.0078 | 26.0187 | 5400 | 0.2090 | 10.1843 |
0.0063 | 27.0187 | 5600 | 0.2096 | 10.2250 |
0.0058 | 28.0186 | 5800 | 0.2047 | 10.2602 |
0.0052 | 29.0186 | 6000 | 0.2087 | 9.9319 |
0.0052 | 30.0185 | 6200 | 0.2040 | 10.0811 |
0.0054 | 31.0185 | 6400 | 0.2081 | 9.9482 |
0.0045 | 32.0184 | 6600 | 0.2063 | 9.6849 |
0.004 | 33.0183 | 6800 | 0.2077 | 10.0052 |
0.0035 | 34.0183 | 7000 | 0.2105 | 10.1056 |
0.0035 | 35.0183 | 7200 | 0.2075 | 9.6985 |
0.0035 | 36.0182 | 7400 | 0.2075 | 9.6063 |
0.003 | 37.0181 | 7600 | 0.2115 | 9.8396 |
0.0027 | 38.0181 | 7800 | 0.2061 | 9.5601 |
0.0025 | 39.0181 | 8000 | 0.2082 | 9.6252 |
0.0025 | 40.018 | 8200 | 0.2052 | 9.5520 |
0.0023 | 41.0179 | 8400 | 0.2060 | 9.7826 |
0.0024 | 42.0179 | 8600 | 0.2083 | 9.6361 |
0.002 | 43.0179 | 8800 | 0.2069 | 9.5981 |
0.0021 | 44.0178 | 9000 | 0.2051 | 9.3892 |
0.0021 | 45.0177 | 9200 | 0.2054 | 9.3756 |
0.0019 | 46.0177 | 9400 | 0.2049 | 9.5167 |
0.0017 | 47.0177 | 9600 | 0.2051 | 9.4733 |
0.0017 | 48.0176 | 9800 | 0.2050 | 9.4923 |
0.0014 | 49.0175 | 10000 | 0.2053 | 9.4597 |
Framework versions
- Transformers 4.45.0.dev0
- Pytorch 2.0.1
- Datasets 3.0.0
- Tokenizers 0.19.1