FelixK7's picture
End of training
c9996b6 verified
|
raw
history blame
2.27 kB
metadata
library_name: transformers
language:
  - lv
license: apache-2.0
base_model: FelixK7/whisper-medium-lv-ver2
tags:
  - hf-asr-leaderboard
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_16_0
metrics:
  - wer
model-index:
  - name: Whisper medium LV - Felikss Kleins
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice 16.0
          type: mozilla-foundation/common_voice_16_0
          config: lv
          split: None
          args: 'config: lv, split: test'
        metrics:
          - name: Wer
            type: wer
            value: 19.39252336448598

Whisper medium LV - Felikss Kleins

This model is a fine-tuned version of FelixK7/whisper-medium-lv-ver2 on the Common Voice 16.0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2882
  • Wer: 19.3925

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • optimizer: Use adamw_hf with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 10000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
No log 99.0002 200 0.1666 11.4486
0.0028 199.0002 400 0.2083 13.5514
0.0007 299.0002 600 0.2815 20.7944
0.0008 399.0002 800 0.2882 19.3925

Framework versions

  • Transformers 4.46.0.dev0
  • Pytorch 2.0.1
  • Datasets 3.0.1
  • Tokenizers 0.20.1