rajistics's picture
Add verifyToken field to verify evaluation results are produced by Hugging Face's automatic model evaluator (#1)
06b2cc2
|
raw
history blame
4.74 kB
metadata
language: en
tags:
  - autotrain
  - DEV
datasets:
  - rajistics/autotrain-data-auditor-sentiment
  - FinanceInc/auditor_sentiment
widget:
  - text: Operating profit jumped to EUR 47 million from EUR 6.6 million
co2_eq_emissions: 3.165771608457648
model-index:
  - name: auditor_sentiment_finetuned
    results:
      - task:
          type: text-classification
          name: Text Classification
        dataset:
          name: FinanceInc/auditor_sentiment
          type: glue
          split: validation
        metrics:
          - type: accuracy
            value: 0.848937
            name: Accuracy
            verified: true
            verifyToken: >-
              eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYWQ1N2FhNjliMzMyOGVjZWUwYTllMmM5Nzg3ZWYxYzY5NWZkYzQxMmQ3OTI1NjY5MjU3NjdiNzVkNGU5YWZiMCIsInZlcnNpb24iOjF9.W3FtDbi_SgD0kwotQ14wwVsmLor8uYR4vNlW8_MqTY99vw7pZNURkq8VtrGh9nKzGUJTv7vWdX1moIA8rCNEDA
          - type: f1
            value: 0.848282
            name: F1
            verified: true
            verifyToken: >-
              eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNWMxY2Q2Nzk0MmM5NzJhNzVhOWYyMDhkMDk1MWJkMjFmOTA2YzUwNjMxNmVlMWI5NjhmOGI0NmQ0MGIyMWRhYSIsInZlcnNpb24iOjF9.HkMmrEUXuzU_jHjMO9g6V1Xo2svOe5gdlu28SyMUXugJbIy5_RJ6joDyhxj06TucT_ZRhr6v77AxCgHB3uwuDA
          - type: recall
            value: 0.808937
            name: Recall
            verified: true
            verifyToken: >-
              eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiODViZDYzOWYzNmQyMjlmYjhlMmExOGY0ZDBjMDFmNWMzYWM0OWVhYWJlNTBkMGEwYTYzY2IyN2Y0MmExZDE1YyIsInZlcnNpb24iOjF9.C1T-yBNPoZ8F-vVYIp9oTd6k4mTSOFw4kAcr6er68Psmt0mfuJ0Xb2nWGXeA0jrgV6bUoomTpZbwGRxtUXzAAA
          - type: precision
            value: 0.818542
            name: Precision
            verified: true
            verifyToken: >-
              eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNTk3NTIyZDA5MjY1NjZlMjQ0M2ZmNTU3MmRmYzM2NWVhZjU1ZDVkMTU1NTA0MzNkNzIxMjI5ZDAwNjNmNWNjNyIsInZlcnNpb24iOjF9.NBlzUtsAmjG-vBch2KxTNaahGdjFx1IYXWo7AsKQru1kNeVzmoYr-HMixQjgMG2Lg5XW8-yoP79eDOMh_lvLCg
          - type: accuracy
            value: 0.848937
            name: Accuracy
            verified: true
          - type: f1
            value: 0.848282
            name: F1
            verified: true
          - type: recall
            value: 0.808937
            name: Recall
            verified: true
          - type: precision
            value: 0.818542
            name: Precision
            verified: true

Auditor Review Sentiment Model

This model has been finetuned from the proprietary version of FinBERT trained internally using demo.org proprietary dataset of auditor evaluation of sentiment.

FinBERT is a BERT model pre-trained on a large corpora of financial texts. The purpose is to enhance financial NLP research and practice in the financial domain, hoping that financial practitioners and researchers can benefit from this model without the necessity of the significant computational resources required to train the model.

Training Data

This model was fine-tuned using Autotrain from the demo-org/auditor_review review dataset.

Model Status

This model is currently being evaluated in development until the end of the quarter. Based on the results, it may be elevated to production.

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 4
  • mixed_precision_training: Native AMP

Model Trained Using AutoTrain

  • Problem type: Multi-class Classification
  • Model ID: 1167143226
  • CO2 Emissions (in grams): 3.165771608457648

Validation Metrics

  • Loss: 0.3418470025062561
  • Accuracy: 0.8617131062951496
  • Macro F1: 0.8448284352912685
  • Micro F1: 0.8617131062951496
  • Weighted F1: 0.8612696670395574
  • Macro Precision: 0.8440532616584138
  • Micro Precision: 0.8617131062951496
  • Weighted Precision: 0.8612762332366959
  • Macro Recall: 0.8461980005490884
  • Micro Recall: 0.8617131062951496
  • Weighted Recall: 0.8617131062951496

Usage

You can use cURL to access this model:

$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/rajistics/autotrain-auditor-sentiment-1167143226

Or Python API:

from transformers import AutoModelForSequenceClassification, AutoTokenizer

model = AutoModelForSequenceClassification.from_pretrained("rajistics/autotrain-auditor-sentiment-1167143226", use_auth_token=True)

tokenizer = AutoTokenizer.from_pretrained("rajistics/autotrain-auditor-sentiment-1167143226", use_auth_token=True)

inputs = tokenizer("I love AutoTrain", return_tensors="pt")

outputs = model(**inputs)