Edit model card

SetFit Polarity Model with firqaaa/indo-setfit-absa-bert-base-restaurants-polarity

This is a SetFit model that can be used for Aspect Based Sentiment Analysis (ABSA). This SetFit model uses firqaaa/indo-setfit-absa-bert-base-restaurants-polarity as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification. In particular, this model is in charge of classifying aspect polarities.

The model has been trained using an efficient few-shot learning technique that involves:

  1. Fine-tuning a Sentence Transformer with contrastive learning.
  2. Training a classification head with features from the fine-tuned Sentence Transformer.

This model was trained within the context of a larger system for ABSA, which looks like so:

  1. Use a spaCy model to select possible aspect span candidates.
  2. Use a SetFit model to filter these possible aspect span candidates.
  3. Use this SetFit model to classify the filtered aspect span candidates.

Model Details

Model Description

Model Sources

Model Labels

Label Examples
negatif
  • 'kebanyakan npc teyvat story utama mc dilupain:saranku developer menciptakan story menarik kehilangan player player yg bertahan repetitif monoton update size gede doang yg isinya chest itupun sampah puzzle yg rumit chest nya sampah story kebanyakan npc teyvat story utama mc dilupain gak difokusin map kalo udah kosong ya nyampah bikin size gede doang main 3 monoton perkembangan buruk'
  • 'tolong ditambah reward gachanya player kesulitan:tolong ditambah reward gachanya player kesulitan primo quest eksplorasi 100 dasar developer kapitalis game monoton ramah player kekurangan bahan gacha karakter'
  • 'gitu aja sampek event selesai primogemnya 10:cuman saran pelit biar player gak kabur game sebelah hadiah event quest perbaiki udah nunggu event hadiah cuman gitu gitu aja sampek event selesai primogemnya 10 pull gacha gak tingakat kesulitan beda hadiah main kabur kalok pelit 1 jariang mohon perbaiki server indonya trimaksih'
positif
  • 'gameplay nya menarik story:gameplay nya menarik story questnya bikin boring menyelesaikan quest kepala frustasi karna dialog gak ngotak panjangnya gak skip developer pelit hadiah senang bermain game karna kikirannya puzzle nya questnya otak pusing developer respon bug tunggu viral bug nya benerin'
  • 'selebihnya bagus cerita story sound effect tampilan:tolong pelit hoyoverse pemain pemain yg yg main karna pemain suka gratisan ntah artefak primoge character item karna jujur pemain puas gamenya upgrade character kumpulan item yg kebanyakan susah pemain kekurangan game selebihnya bagus cerita story sound effect tampilan didalam game yg lumayan bagus'
  • 'bagus cerita story sound effect tampilan didalam game:tolong pelit hoyoverse pemain pemain yg yg main karna pemain suka gratisan ntah artefak primoge character item karna jujur pemain puas gamenya upgrade character kumpulan item yg kebanyakan susah pemain kekurangan game selebihnya bagus cerita story sound effect tampilan didalam game yg lumayan bagus'

Uses

Direct Use for Inference

First install the SetFit library:

pip install setfit

Then you can load this model and run inference.

from setfit import AbsaModel

# Download from the 🤗 Hub
model = AbsaModel.from_pretrained(
    "Funnyworld1412/ABSA_review_game_genshin_impact-aspect",
    "Funnyworld1412/ABSA_review_game_genshin_impact-polarity",
)
# Run inference
preds = model("The food was great, but the venue is just way too busy.")

Training Details

Training Set Metrics

Training set Min Median Max
Word count 7 31.0185 70
Label Training Sample Count
konflik 0
negatif 208
netral 0
positif 116

Training Hyperparameters

  • batch_size: (4, 4)
  • num_epochs: (1, 1)
  • max_steps: -1
  • sampling_strategy: oversampling
  • num_iterations: 10
  • body_learning_rate: (2e-05, 1e-05)
  • head_learning_rate: 0.01
  • loss: CosineSimilarityLoss
  • distance_metric: cosine_distance
  • margin: 0.25
  • end_to_end: False
  • use_amp: False
  • warmup_proportion: 0.1
  • seed: 42
  • eval_max_steps: -1
  • load_best_model_at_end: False

Training Results

Epoch Step Training Loss Validation Loss
0.0006 1 0.2317 -
0.0309 50 0.0253 -
0.0617 100 0.0008 -
0.0926 150 0.4789 -
0.1235 200 0.0215 -
0.1543 250 0.0012 -
0.1852 300 0.1843 -
0.2160 350 0.0014 -
0.2469 400 0.0013 -
0.2778 450 0.0012 -
0.3086 500 0.0016 -
0.3395 550 0.0004 -
0.3704 600 0.0006 -
0.4012 650 0.0017 -
0.4321 700 0.0012 -
0.4630 750 0.0005 -
0.4938 800 0.0003 -
0.5247 850 0.0004 -
0.5556 900 0.0006 -
0.5864 950 0.2368 -
0.6173 1000 0.0003 -
0.6481 1050 0.0005 -
0.6790 1100 0.0006 -
0.7099 1150 0.0008 -
0.7407 1200 0.0924 -
0.7716 1250 0.0003 -
0.8025 1300 0.0003 -
0.8333 1350 0.0003 -
0.8642 1400 0.0006 -
0.8951 1450 0.0005 -
0.9259 1500 0.0004 -
0.9568 1550 0.0003 -
0.9877 1600 0.0002 -
1.0 1620 - 0.1328

Framework Versions

  • Python: 3.10.13
  • SetFit: 1.0.3
  • Sentence Transformers: 3.0.1
  • spaCy: 3.7.5
  • Transformers: 4.36.2
  • PyTorch: 2.1.2
  • Datasets: 2.19.2
  • Tokenizers: 0.15.2

Citation

BibTeX

@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
Downloads last month
0
Safetensors
Model size
568M params
Tensor type
F32
·
Inference Examples
Inference API (serverless) has been turned off for this model.

Model tree for Funnyworld1412/ABSA_review_game_genshin_impact-polarity

Base model

BAAI/bge-m3
Finetuned
(2)
this model