SetFit Polarity Model with firqaaa/indo-setfit-absa-bert-base-restaurants-polarity
This is a SetFit model that can be used for Aspect Based Sentiment Analysis (ABSA). This SetFit model uses firqaaa/indo-setfit-absa-bert-base-restaurants-polarity as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification. In particular, this model is in charge of classifying aspect polarities.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
This model was trained within the context of a larger system for ABSA, which looks like so:
- Use a spaCy model to select possible aspect span candidates.
- Use a SetFit model to filter these possible aspect span candidates.
- Use this SetFit model to classify the filtered aspect span candidates.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: firqaaa/indo-setfit-absa-bert-base-restaurants-polarity
- Classification head: a LogisticRegression instance
- spaCy Model: id_core_news_trf
- SetFitABSA Aspect Model: Funnyworld1412/ABSA_review_game_genshin_impact-aspect
- SetFitABSA Polarity Model: Funnyworld1412/ABSA_review_game_genshin_impact-polarity
- Maximum Sequence Length: 8192 tokens
- Number of Classes: 2 classes
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
Label | Examples |
---|---|
negatif |
|
positif |
|
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import AbsaModel
# Download from the 🤗 Hub
model = AbsaModel.from_pretrained(
"Funnyworld1412/ABSA_review_game_genshin_impact-aspect",
"Funnyworld1412/ABSA_review_game_genshin_impact-polarity",
)
# Run inference
preds = model("The food was great, but the venue is just way too busy.")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 7 | 31.0185 | 70 |
Label | Training Sample Count |
---|---|
konflik | 0 |
negatif | 208 |
netral | 0 |
positif | 116 |
Training Hyperparameters
- batch_size: (4, 4)
- num_epochs: (1, 1)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 10
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0006 | 1 | 0.2317 | - |
0.0309 | 50 | 0.0253 | - |
0.0617 | 100 | 0.0008 | - |
0.0926 | 150 | 0.4789 | - |
0.1235 | 200 | 0.0215 | - |
0.1543 | 250 | 0.0012 | - |
0.1852 | 300 | 0.1843 | - |
0.2160 | 350 | 0.0014 | - |
0.2469 | 400 | 0.0013 | - |
0.2778 | 450 | 0.0012 | - |
0.3086 | 500 | 0.0016 | - |
0.3395 | 550 | 0.0004 | - |
0.3704 | 600 | 0.0006 | - |
0.4012 | 650 | 0.0017 | - |
0.4321 | 700 | 0.0012 | - |
0.4630 | 750 | 0.0005 | - |
0.4938 | 800 | 0.0003 | - |
0.5247 | 850 | 0.0004 | - |
0.5556 | 900 | 0.0006 | - |
0.5864 | 950 | 0.2368 | - |
0.6173 | 1000 | 0.0003 | - |
0.6481 | 1050 | 0.0005 | - |
0.6790 | 1100 | 0.0006 | - |
0.7099 | 1150 | 0.0008 | - |
0.7407 | 1200 | 0.0924 | - |
0.7716 | 1250 | 0.0003 | - |
0.8025 | 1300 | 0.0003 | - |
0.8333 | 1350 | 0.0003 | - |
0.8642 | 1400 | 0.0006 | - |
0.8951 | 1450 | 0.0005 | - |
0.9259 | 1500 | 0.0004 | - |
0.9568 | 1550 | 0.0003 | - |
0.9877 | 1600 | 0.0002 | - |
1.0 | 1620 | - | 0.1328 |
Framework Versions
- Python: 3.10.13
- SetFit: 1.0.3
- Sentence Transformers: 3.0.1
- spaCy: 3.7.5
- Transformers: 4.36.2
- PyTorch: 2.1.2
- Datasets: 2.19.2
- Tokenizers: 0.15.2
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
- Downloads last month
- 0
Inference API (serverless) has been turned off for this model.
Model tree for Funnyworld1412/ABSA_review_game_genshin_impact-polarity
Base model
BAAI/bge-m3