metadata
license: apache-2.0
base_model: google/flan-t5-base
tags:
- generated_from_trainer
datasets:
- samsum
metrics:
- rouge
model-index:
- name: flan-t5-base-samsum
results:
- task:
name: Sequence-to-sequence Language Modeling
type: text2text-generation
dataset:
name: samsum
type: samsum
config: samsum
split: test
args: samsum
metrics:
- name: Rouge1
type: rouge
value: 47.3683
flan-t5-base-samsum
This model is a fine-tuned version of google/flan-t5-base on the samsum dataset. It achieves the following results on the evaluation set:
- Loss: 1.3716
- Rouge1: 47.3683
- Rouge2: 24.0343
- Rougel: 39.9874
- Rougelsum: 43.6453
- Gen Len: 17.3004
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
---|---|---|---|---|---|---|---|---|
1.4531 | 1.0 | 1842 | 1.3836 | 46.4391 | 23.0513 | 39.1448 | 42.8774 | 17.1868 |
1.3433 | 2.0 | 3684 | 1.3729 | 47.0465 | 23.4504 | 39.8361 | 43.3316 | 17.2613 |
1.2767 | 3.0 | 5526 | 1.3716 | 47.3683 | 24.0343 | 39.9874 | 43.6453 | 17.3004 |
1.2117 | 4.0 | 7368 | 1.3739 | 47.6321 | 24.1445 | 40.3378 | 43.9123 | 17.0989 |
1.1622 | 5.0 | 9210 | 1.3826 | 47.6786 | 23.9568 | 40.2743 | 43.7625 | 17.0879 |
1.1387 | 6.0 | 11052 | 1.3920 | 47.6434 | 24.0265 | 40.2093 | 43.9179 | 17.3712 |
1.1011 | 7.0 | 12894 | 1.3947 | 47.6658 | 24.0395 | 40.3477 | 43.8425 | 17.2186 |
1.0755 | 8.0 | 14736 | 1.4059 | 47.5613 | 24.0555 | 40.181 | 43.7645 | 17.1490 |
1.0514 | 9.0 | 16578 | 1.4053 | 47.9552 | 24.2395 | 40.3731 | 44.0694 | 17.3602 |
1.0311 | 10.0 | 18420 | 1.4114 | 48.0582 | 24.3022 | 40.4713 | 44.1136 | 17.3175 |
Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.3
- Tokenizers 0.13.3