GaetanMichelet's picture
End of training
47b760a verified
metadata
base_model: meta-llama/Meta-Llama-3.1-8B-Instruct
datasets:
  - GaetanMichelet/chat-60_ft_task-1
  - GaetanMichelet/chat-120_ft_task-1
library_name: peft
license: llama3.1
tags:
  - alignment-handbook
  - trl
  - sft
  - generated_from_trainer
model-index:
  - name: Llama-31-8B_task-1_120-samples_config-4_full
    results: []

Llama-31-8B_task-1_120-samples_config-4_full

This model is a fine-tuned version of meta-llama/Meta-Llama-3.1-8B-Instruct on the GaetanMichelet/chat-60_ft_task-1 and the GaetanMichelet/chat-120_ft_task-1 datasets. It achieves the following results on the evaluation set:

  • Loss: 0.9042

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • distributed_type: multi-GPU
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 150

Training results

Training Loss Epoch Step Validation Loss
2.4687 0.9091 5 2.4589
2.5083 2.0 11 2.4440
2.4676 2.9091 16 2.4218
2.4562 4.0 22 2.3870
2.377 4.9091 27 2.3475
2.3303 6.0 33 2.2793
2.2553 6.9091 38 2.2254
2.174 8.0 44 2.1392
2.131 8.9091 49 2.0661
2.0142 10.0 55 1.9626
1.8873 10.9091 60 1.8746
1.7633 12.0 66 1.7650
1.726 12.9091 71 1.6563
1.5711 14.0 77 1.5123
1.4344 14.9091 82 1.3950
1.3201 16.0 88 1.2661
1.1787 16.9091 93 1.1831
1.1444 18.0 99 1.1188
1.0591 18.9091 104 1.0836
1.0151 20.0 110 1.0540
1.0277 20.9091 115 1.0388
1.0025 22.0 121 1.0250
1.0161 22.9091 126 1.0154
0.9946 24.0 132 1.0047
0.9773 24.9091 137 0.9970
0.9708 26.0 143 0.9890
0.9374 26.9091 148 0.9822
0.9403 28.0 154 0.9751
0.94 28.9091 159 0.9703
0.902 30.0 165 0.9633
0.9215 30.9091 170 0.9604
0.8854 32.0 176 0.9548
0.96 32.9091 181 0.9503
0.9162 34.0 187 0.9453
0.8686 34.9091 192 0.9429
0.906 36.0 198 0.9385
0.8762 36.9091 203 0.9354
0.8929 38.0 209 0.9332
0.8687 38.9091 214 0.9301
0.8933 40.0 220 0.9279
0.858 40.9091 225 0.9241
0.8481 42.0 231 0.9223
0.8228 42.9091 236 0.9217
0.8593 44.0 242 0.9186
0.8238 44.9091 247 0.9156
0.8081 46.0 253 0.9161
0.8327 46.9091 258 0.9129
0.8029 48.0 264 0.9110
0.7909 48.9091 269 0.9094
0.7826 50.0 275 0.9079
0.773 50.9091 280 0.9122
0.7377 52.0 286 0.9078
0.7491 52.9091 291 0.9050
0.7414 54.0 297 0.9093
0.7275 54.9091 302 0.9053
0.7198 56.0 308 0.9046
0.7203 56.9091 313 0.9093
0.6903 58.0 319 0.9042
0.6987 58.9091 324 0.9107
0.7141 60.0 330 0.9079
0.7023 60.9091 335 0.9120
0.6945 62.0 341 0.9087
0.6897 62.9091 346 0.9130
0.6597 64.0 352 0.9134
0.6954 64.9091 357 0.9120

Framework versions

  • PEFT 0.12.0
  • Transformers 4.44.0
  • Pytorch 2.1.2+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1