metadata
base_model: meta-llama/Meta-Llama-3.1-8B-Instruct
library_name: peft
license: llama3.1
tags:
- trl
- sft
- generated_from_trainer
model-index:
- name: Llama-31-8B_task-2_120-samples_config-2
results: []
Llama-31-8B_task-2_120-samples_config-2
This model is a fine-tuned version of meta-llama/Meta-Llama-3.1-8B-Instruct on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.3889
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- gradient_accumulation_steps: 16
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.1488 | 0.9091 | 5 | 1.0947 |
1.0165 | 2.0 | 11 | 0.9407 |
0.8171 | 2.9091 | 16 | 0.8598 |
0.7886 | 4.0 | 22 | 0.7892 |
0.7586 | 4.9091 | 27 | 0.7540 |
0.6893 | 6.0 | 33 | 0.7249 |
0.6344 | 6.9091 | 38 | 0.7066 |
0.5774 | 8.0 | 44 | 0.7006 |
0.5214 | 8.9091 | 49 | 0.7153 |
0.4418 | 10.0 | 55 | 0.7321 |
0.3485 | 10.9091 | 60 | 0.8033 |
0.2374 | 12.0 | 66 | 0.8848 |
0.1445 | 12.9091 | 71 | 1.0025 |
0.075 | 14.0 | 77 | 1.3091 |
0.0347 | 14.9091 | 82 | 1.3889 |
Framework versions
- PEFT 0.12.0
- Transformers 4.44.0
- Pytorch 2.1.2+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1