Configurations choice
Collection
Choice of configuration based on the results of different fine-tuning. All provide mor or less same results but 1 and 2 are way faster! (lr)
•
52 items
•
Updated
This model is a fine-tuned version of meta-llama/Meta-Llama-3.1-8B-Instruct on the GaetanMichelet/chat-60_ft_task-2 dataset. It achieves the following results on the evaluation set:
More information needed
More information needed
More information needed
The following hyperparameters were used during training:
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.5658 | 0.6957 | 2 | 1.5854 |
1.5728 | 1.7391 | 5 | 1.5836 |
1.583 | 2.7826 | 8 | 1.5803 |
1.562 | 3.8261 | 11 | 1.5753 |
1.5687 | 4.8696 | 14 | 1.5688 |
1.5495 | 5.9130 | 17 | 1.5600 |
1.5493 | 6.9565 | 20 | 1.5482 |
1.5379 | 8.0 | 23 | 1.5340 |
1.5155 | 8.6957 | 25 | 1.5222 |
1.5131 | 9.7391 | 28 | 1.5057 |
1.4971 | 10.7826 | 31 | 1.4859 |
1.4675 | 11.8261 | 34 | 1.4652 |
1.4518 | 12.8696 | 37 | 1.4474 |
1.4267 | 13.9130 | 40 | 1.4301 |
1.4004 | 14.9565 | 43 | 1.4132 |
1.3993 | 16.0 | 46 | 1.3976 |
1.3748 | 16.6957 | 48 | 1.3881 |
1.3664 | 17.7391 | 51 | 1.3743 |
1.3465 | 18.7826 | 54 | 1.3614 |
1.3407 | 19.8261 | 57 | 1.3488 |
1.32 | 20.8696 | 60 | 1.3369 |
1.305 | 21.9130 | 63 | 1.3247 |
1.281 | 22.9565 | 66 | 1.3119 |
1.2869 | 24.0 | 69 | 1.2986 |
1.2523 | 24.6957 | 71 | 1.2903 |
1.2642 | 25.7391 | 74 | 1.2783 |
1.2323 | 26.7826 | 77 | 1.2657 |
1.2121 | 27.8261 | 80 | 1.2535 |
1.1896 | 28.8696 | 83 | 1.2410 |
1.1678 | 29.9130 | 86 | 1.2283 |
1.1768 | 30.9565 | 89 | 1.2154 |
1.1824 | 32.0 | 92 | 1.2030 |
1.1589 | 32.6957 | 94 | 1.1948 |
1.126 | 33.7391 | 97 | 1.1820 |
1.1059 | 34.7826 | 100 | 1.1694 |
1.1334 | 35.8261 | 103 | 1.1582 |
1.1081 | 36.8696 | 106 | 1.1483 |
1.0794 | 37.9130 | 109 | 1.1392 |
1.0614 | 38.9565 | 112 | 1.1315 |
1.0877 | 40.0 | 115 | 1.1259 |
1.0198 | 40.6957 | 117 | 1.1229 |
1.0538 | 41.7391 | 120 | 1.1193 |
1.0351 | 42.7826 | 123 | 1.1165 |
1.0121 | 43.8261 | 126 | 1.1144 |
1.0475 | 44.8696 | 129 | 1.1125 |
1.035 | 45.9130 | 132 | 1.1105 |
1.0582 | 46.9565 | 135 | 1.1090 |
1.029 | 48.0 | 138 | 1.1072 |
1.0353 | 48.6957 | 140 | 1.1064 |
1.0203 | 49.7391 | 143 | 1.1048 |
1.0313 | 50.7826 | 146 | 1.1035 |
1.0473 | 51.8261 | 149 | 1.1026 |
1.0189 | 52.8696 | 152 | 1.1011 |
1.0088 | 53.9130 | 155 | 1.1001 |
1.0336 | 54.9565 | 158 | 1.0989 |
1.0014 | 56.0 | 161 | 1.0981 |
1.0036 | 56.6957 | 163 | 1.0972 |
1.0266 | 57.7391 | 166 | 1.0962 |
0.9893 | 58.7826 | 169 | 1.0956 |
1.0122 | 59.8261 | 172 | 1.0948 |
1.0456 | 60.8696 | 175 | 1.0939 |
0.9873 | 61.9130 | 178 | 1.0933 |
1.0189 | 62.9565 | 181 | 1.0926 |
1.0325 | 64.0 | 184 | 1.0918 |
1.0081 | 64.6957 | 186 | 1.0912 |
0.995 | 65.7391 | 189 | 1.0908 |
1.0104 | 66.7826 | 192 | 1.0903 |
0.9979 | 67.8261 | 195 | 1.0896 |
0.9927 | 68.8696 | 198 | 1.0893 |
0.9898 | 69.9130 | 201 | 1.0887 |
1.0087 | 70.9565 | 204 | 1.0882 |
0.9903 | 72.0 | 207 | 1.0878 |
1.0198 | 72.6957 | 209 | 1.0877 |
1.0078 | 73.7391 | 212 | 1.0874 |
1.0056 | 74.7826 | 215 | 1.0870 |
1.0114 | 75.8261 | 218 | 1.0867 |
0.9982 | 76.8696 | 221 | 1.0864 |
1.0105 | 77.9130 | 224 | 1.0860 |
1.0033 | 78.9565 | 227 | 1.0859 |
1.0024 | 80.0 | 230 | 1.0858 |
1.0091 | 80.6957 | 232 | 1.0855 |
0.9971 | 81.7391 | 235 | 1.0853 |
0.969 | 82.7826 | 238 | 1.0851 |
1.0242 | 83.8261 | 241 | 1.0847 |
0.9949 | 84.8696 | 244 | 1.0850 |
0.9715 | 85.9130 | 247 | 1.0847 |
1.0164 | 86.9565 | 250 | 1.0846 |
0.9729 | 88.0 | 253 | 1.0845 |
1.0065 | 88.6957 | 255 | 1.0845 |
0.994 | 89.7391 | 258 | 1.0845 |
0.9852 | 90.7826 | 261 | 1.0843 |
0.9755 | 91.8261 | 264 | 1.0842 |
1.0191 | 92.8696 | 267 | 1.0839 |
0.9864 | 93.9130 | 270 | 1.0841 |
0.9773 | 94.9565 | 273 | 1.0841 |
0.9869 | 96.0 | 276 | 1.0842 |
0.986 | 96.6957 | 278 | 1.0841 |
0.9925 | 97.7391 | 281 | 1.0840 |
0.9882 | 98.7826 | 284 | 1.0840 |
0.9917 | 99.8261 | 287 | 1.0840 |
Base model
meta-llama/Llama-3.1-8B