metadata
base_model: meta-llama/Meta-Llama-3.1-8B-Instruct
datasets:
- GaetanMichelet/chat-60_ft_task-3
- GaetanMichelet/chat-120_ft_task-3
library_name: peft
license: llama3.1
tags:
- alignment-handbook
- trl
- sft
- generated_from_trainer
model-index:
- name: Llama-31-8B_task-3_120-samples_config-4
results: []
Llama-31-8B_task-3_120-samples_config-4
This model is a fine-tuned version of meta-llama/Meta-Llama-3.1-8B-Instruct on the GaetanMichelet/chat-60_ft_task-3 and the GaetanMichelet/chat-120_ft_task-3 datasets. It achieves the following results on the evaluation set:
- Loss: 0.4427
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- gradient_accumulation_steps: 16
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 150
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
2.4707 | 0.9091 | 5 | 2.5024 |
2.3847 | 2.0 | 11 | 2.4794 |
2.5822 | 2.9091 | 16 | 2.4506 |
2.2635 | 4.0 | 22 | 2.3903 |
2.446 | 4.9091 | 27 | 2.3184 |
2.3172 | 6.0 | 33 | 2.1938 |
2.0582 | 6.9091 | 38 | 2.0560 |
1.9038 | 8.0 | 44 | 1.8385 |
1.7291 | 8.9091 | 49 | 1.6252 |
1.3996 | 10.0 | 55 | 1.3456 |
1.1127 | 10.9091 | 60 | 1.1189 |
0.8648 | 12.0 | 66 | 0.8627 |
0.8247 | 12.9091 | 71 | 0.7228 |
0.5681 | 14.0 | 77 | 0.6453 |
0.4968 | 14.9091 | 82 | 0.6020 |
0.589 | 16.0 | 88 | 0.5632 |
0.3902 | 16.9091 | 93 | 0.5394 |
0.4795 | 18.0 | 99 | 0.5253 |
0.3937 | 18.9091 | 104 | 0.5188 |
0.3482 | 20.0 | 110 | 0.5149 |
0.4633 | 20.9091 | 115 | 0.5076 |
0.4324 | 22.0 | 121 | 0.5073 |
0.5268 | 22.9091 | 126 | 0.5014 |
0.3829 | 24.0 | 132 | 0.4946 |
0.3884 | 24.9091 | 137 | 0.4875 |
0.3955 | 26.0 | 143 | 0.4859 |
0.3296 | 26.9091 | 148 | 0.4827 |
0.364 | 28.0 | 154 | 0.4805 |
0.3218 | 28.9091 | 159 | 0.4765 |
0.2995 | 30.0 | 165 | 0.4727 |
0.3728 | 30.9091 | 170 | 0.4668 |
0.2413 | 32.0 | 176 | 0.4653 |
0.4141 | 32.9091 | 181 | 0.4626 |
0.3693 | 34.0 | 187 | 0.4562 |
0.3666 | 34.9091 | 192 | 0.4526 |
0.3605 | 36.0 | 198 | 0.4506 |
0.2923 | 36.9091 | 203 | 0.4474 |
0.3422 | 38.0 | 209 | 0.4443 |
0.3489 | 38.9091 | 214 | 0.4427 |
0.3737 | 40.0 | 220 | 0.4435 |
0.2804 | 40.9091 | 225 | 0.4437 |
0.3212 | 42.0 | 231 | 0.4469 |
0.2322 | 42.9091 | 236 | 0.4480 |
0.2569 | 44.0 | 242 | 0.4507 |
0.2501 | 44.9091 | 247 | 0.4544 |
0.2247 | 46.0 | 253 | 0.4641 |
Framework versions
- PEFT 0.12.0
- Transformers 4.44.0
- Pytorch 2.1.2+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1