GaetanMichelet's picture
End of training
2404002 verified
|
raw
history blame
4.15 kB
metadata
base_model: meta-llama/Meta-Llama-3.1-8B-Instruct
datasets:
  - GaetanMichelet/chat-60_ft_task-3
library_name: peft
license: llama3.1
tags:
  - alignment-handbook
  - trl
  - sft
  - generated_from_trainer
model-index:
  - name: Llama-31-8B_task-3_60-samples_config-4
    results: []

Llama-31-8B_task-3_60-samples_config-4

This model is a fine-tuned version of meta-llama/Meta-Llama-3.1-8B-Instruct on the GaetanMichelet/chat-60_ft_task-3 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4733

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • distributed_type: multi-GPU
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 150

Training results

Training Loss Epoch Step Validation Loss
2.4485 0.6957 2 2.4786
2.4413 1.7391 5 2.4667
2.6263 2.7826 8 2.4443
2.1438 3.8261 11 2.4112
2.3995 4.8696 14 2.3654
2.2475 5.9130 17 2.3021
2.2194 6.9565 20 2.2092
2.2976 8.0 23 2.0988
2.0386 8.6957 25 2.0090
1.8757 9.7391 28 1.8478
1.753 10.7826 31 1.6617
1.5394 11.8261 34 1.4736
1.4055 12.8696 37 1.2968
1.1544 13.9130 40 1.1374
1.0965 14.9565 43 0.9952
0.8824 16.0 46 0.8632
0.8412 16.6957 48 0.7849
0.7232 17.7391 51 0.7002
0.6275 18.7826 54 0.6459
0.6078 19.8261 57 0.6102
0.5477 20.8696 60 0.5828
0.4369 21.9130 63 0.5587
0.5025 22.9565 66 0.5396
0.5043 24.0 69 0.5226
0.3742 24.6957 71 0.5101
0.449 25.7391 74 0.5003
0.3276 26.7826 77 0.4925
0.4754 27.8261 80 0.4932
0.3724 28.8696 83 0.4876
0.4679 29.9130 86 0.4861
0.3245 30.9565 89 0.4884
0.3613 32.0 92 0.4922
0.3511 32.6957 94 0.4899
0.5275 33.7391 97 0.4931
0.3403 34.7826 100 0.4883
0.4209 35.8261 103 0.4815
0.3543 36.8696 106 0.4805
0.4115 37.9130 109 0.4767
0.3902 38.9565 112 0.4794
0.3735 40.0 115 0.4776
0.3227 40.6957 117 0.4733
0.2983 41.7391 120 0.4797
0.4421 42.7826 123 0.4791
0.3819 43.8261 126 0.4739
0.2965 44.8696 129 0.4764
0.2661 45.9130 132 0.4765
0.3827 46.9565 135 0.4778
0.3144 48.0 138 0.4797

Framework versions

  • PEFT 0.12.0
  • Transformers 4.44.0
  • Pytorch 2.1.2+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1