MiniChat-2-3B / README.md
GeneZC's picture
Update README.md
2061213
|
raw
history blame
4.45 kB
metadata
license: apache-2.0
language:
  - en
  - zh
library_name: transformers
widget:
  - text: <s> [|User|] Hi 👋  </s>[|Assistant|]

MiniChat-2-3B

📑 arXiv | 👻 GitHub | 🤗 HuggingFace-MiniMA | 🤗 HuggingFace-MiniChat | 🤖 ModelScope-MiniMA | 🤖 ModelScope-MiniChat | 🤗 HuggingFace-MiniChat-1.5 | 🤗 HuggingFace-MiniMA-2 | 🤗 HuggingFace-MiniChat-2

🆕 Updates from MiniChat-3B:

  • better base model MiniMA-2-3B;
  • better data mixture;
  • use of NEFTune;
  • use of DPO.

❗ Must comply with LICENSE of LLaMA2 since it is derived from LLaMA2.

A language model continued from MiniMA-3B and finetuned on both instruction and preference data.

Surpassing Vicuna-7B and approximating LLaMA-2-Chat-7B on MT-Bench.

teaser_b

Standard Benchmarks

Method TFLOPs MMLU (5-shot) CEval (5-shot) DROP (3-shot) HumanEval (0-shot) BBH (3-shot) GSM8K (8-shot)
Mamba-2.8B 4.6E9 25.58 24.74 15.72 7.32 29.37 3.49
ShearedLLaMA-2.7B 0.8E9 26.97 22.88 19.98 4.88 30.48 3.56
BTLM-3B 11.3E9 27.20 26.00 17.84 10.98 30.87 4.55
StableLM-3B 72.0E9 44.75 31.05 22.35 15.85 32.59 10.99
Qwen-1.8B 23.8E9 44.05 54.75 12.97 14.02 30.80 22.97
Phi-2-2.8B 159.9E9 56.74 34.03 30.74 46.95 44.13 55.42
LLaMA-2-7B 84.0E9 46.00 34.40 31.57 12.80 32.02 14.10
MiniMA-3B 4.0E9 28.51 28.23 22.50 10.98 31.61 8.11
MiniChat-3B 4.0E9 38.40 36.48 22.58 18.29 31.36 29.72
MiniMA-2-3B 13.4E9 40.14 44.65 23.10 14.63 31.43 8.87
MiniChat-2-3B 13.4E9 46.17 43.91 30.26 22.56 34.95 38.13

Instruction-following Benchmarks

Method AlpacaEval MT-Bench MT-Bench-ZH
GPT-4 95.28 9.18 8.96
Zephyr-7B-Beta 90.60 7.34 6.27#
Vicuna-7B 76.84 6.17 5.22#
LLaMA-2-Chat-7B 71.37 6.27 5.43#
Qwen-Chat-7B - - 6.24
Phi-2-DPO 81.37 - 1.59#$
StableLM-Zephyr-3B 76.00 6.64 4.31#
Rocket-3B 79.75 6.56 4.07#
Qwen-Chat-1.8B - - 5.65
MiniChat-3B 48.82 - -
MiniChat-2-3B 77.30 6.23 6.04

# specialized mainly for English.

$ finetuned without multi-turn instruction data.

The following is an example code snippet to use MiniChat-2-3B:

import torch

from transformers import AutoModelForCausalLM, AutoTokenizer

from conversation import get_default_conv_template

# MiniChat
tokenizer = AutoTokenizer.from_pretrained("GeneZC/MiniChat-2-3B", use_fast=False)
# GPU.
model = AutoModelForCausalLM.from_pretrained("GeneZC/MiniChat-2-3B", use_cache=True, device_map="auto", torch_dtype=torch.float16).eval()
# CPU.
# model = AutoModelForCausalLM.from_pretrained("GeneZC/MiniChat-2-3B", use_cache=True, device_map="cpu", torch_dtype=torch.float16).eval()

conv = get_default_conv_template("minichat")

question = "Implement a program to find the common elements in two arrays without using any extra data structures."
conv.append_message(conv.roles[0], question)
conv.append_message(conv.roles[1], None)
prompt = conv.get_prompt()
input_ids = tokenizer([prompt]).input_ids
output_ids = model.generate(
    torch.as_tensor(input_ids).cuda(),
    do_sample=True,
    temperature=0.7,
    max_new_tokens=1024,
)
output_ids = output_ids[0][len(input_ids[0]):]
output = tokenizer.decode(output_ids, skip_special_tokens=True).strip()
# output: "def common_elements(arr1, arr2):\n    if len(arr1) == 0:\n        return []\n    if len(arr2) == 0:\n        return arr1\n\n    common_elements = []\n    for element in arr1:\n        if element in arr2:\n            common_elements.append(element)\n\n    return common_elements"
# Multiturn conversation could be realized by continuously appending questions to `conv`.

Bibtex

@article{zhang2023law,
    title={Towards the Law of Capacity Gap in Distilling Language Models},
    author={Zhang, Chen and Song, Dawei and Ye, Zheyu and Gao, Yan},
    year={2023},
    url={https://arxiv.org/abs/2311.07052}
}