Edit model card

StrangeMerges_30-7B-slerp

Given the benchmark score distribution this model might jump several spots if trained on something like orca-math or thruthy datasets. Anyone got a good walkthrough vid with about how long training takes/colab costs, etc?

StrangeMerges_30-7B-slerp is a merge of the following models using LazyMergekit:

🧩 Configuration

slices:
  - sources:
      - model: Gille/StrangeMerges_21-7B-slerp
        layer_range: [0, 32]
      - model: yam-peleg/Experiment26-7B
        layer_range: [0, 32]
merge_method: slerp
base_model: Gille/StrangeMerges_21-7B-slerp
parameters:
  t:
    - filter: self_attn
      value: [0, 0.5, 0.3, 0.7, 1]
    - filter: mlp
      value: [1, 0.5, 0.7, 0.3, 0]
    - value: 0.5
dtype: bfloat16

πŸ’» Usage

!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "Gille/StrangeMerges_30-7B-slerp"
messages = [{"role": "user", "content": "What is a large language model?"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
Downloads last month
74
Safetensors
Model size
7.24B params
Tensor type
BF16
Β·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Gille/StrangeMerges_30-7B-slerp