GlycerinLOL's picture
Model save
5dfc59b verified
metadata
base_model: google/pegasus-large
tags:
  - generated_from_trainer
metrics:
  - rouge
  - precision
  - recall
  - f1
model-index:
  - name: LLM_Teached_Pegasus_From_Scratch
    results: []

LLM_Teached_Pegasus_From_Scratch

This model is a fine-tuned version of google/pegasus-large on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.5146
  • Rouge1: 0.4863
  • Rouge2: 0.2348
  • Rougel: 0.4011
  • Rougelsum: 0.4012
  • Gen Len: 27.5716
  • Precision: 0.9118
  • Recall: 0.9131
  • F1: 0.9122

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 24
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 96
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 16
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step F1 Gen Len Validation Loss Precision Recall Rouge1 Rouge2 Rougel Rougelsum
2.0443 1.0 521 0.9049 28.3633 1.7046 0.9041 0.9061 0.4488 0.203 0.3633 0.3633
1.7826 2.0 1042 0.9072 28.1949 1.6347 0.9062 0.9085 0.4616 0.2133 0.3761 0.3758
1.7134 3.0 1563 0.9084 28.5218 1.5991 0.9072 0.91 0.4683 0.2186 0.3824 0.3822
1.6664 4.0 2084 0.9096 28.2498 1.5767 0.9087 0.9109 0.4738 0.2233 0.3878 0.3876
1.6296 5.0 2605 0.9103 28.2396 1.5595 0.9093 0.9117 0.4775 0.2265 0.3911 0.391
1.5984 6.0 3126 0.9109 28.28 1.5468 0.9098 0.9124 0.4805 0.2284 0.3941 0.3938
1.5738 7.0 3647 1.5370 0.4807 0.2296 0.3945 0.3946 27.8378 0.9105 0.9124 0.9113
1.5476 8.0 4168 1.5308 0.4823 0.2315 0.3963 0.3965 27.7364 0.9108 0.9125 0.9114
1.535 9.0 4689 1.5261 0.4829 0.2309 0.3974 0.3974 27.6535 0.911 0.9125 0.9116
1.52 10.0 5210 1.5231 0.4847 0.2332 0.3992 0.3993 27.816 0.911 0.9128 0.9117
1.5145 11.0 5731 1.5200 0.4851 0.2339 0.4004 0.4006 27.3604 0.9119 0.9127 0.9121
1.5028 12.0 6252 1.5178 0.4858 0.2345 0.4001 0.4002 27.4625 0.9118 0.9129 0.9122
1.4946 13.0 6773 1.5164 0.4859 0.2341 0.4004 0.4005 27.6789 0.9115 0.9131 0.9121
1.4877 14.0 7294 1.5151 0.4868 0.235 0.4013 0.4013 27.5804 0.9119 0.9131 0.9123
1.4855 15.0 7815 1.5146 0.4863 0.2349 0.4014 0.4016 27.5844 0.9117 0.9131 0.9122
1.4782 16.0 8336 1.5146 0.4863 0.2348 0.4011 0.4012 27.5716 0.9118 0.9131 0.9122

Framework versions

  • Transformers 4.36.0
  • Pytorch 2.0.1+cu117
  • Datasets 2.14.5
  • Tokenizers 0.15.0