Edit model card

J.O.S.I.E.3-Beta12-7B-slerp

J.O.S.I.E.3-Beta12-7B-slerp is a merge of the following models using LazyMergekit:

This model has been further Finetuned on my custom J.O.S.I.E.v3.11 Dataset, in the ChatML prompt Format.

-- GGUF Quants --

<|im_start|>system
You are JOSIE, my private and superinteligent AI Assistant.<|im_end|>
<|im_start|>user
{{ .Prompt }}<|im_end|>
<|im_start|>assistant
{{ .Response }}<|im_end|>

Run in ollama:

ollama run goekdenizguelmez/j.o.s.i.e.v3-beta12.1

Only q4-k-m for now!

🧩 Configuration

slices:
  - sources:
      - model: Weyaxi/Einstein-v6-7B
        layer_range: [0, 32]
      - model: argilla/CapybaraHermes-2.5-Mistral-7B
        layer_range: [0, 32]
merge_method: slerp
base_model: argilla/CapybaraHermes-2.5-Mistral-7B
parameters:
  t:
    - filter: self_attn
      value: [0, 0.5, 0.3, 0.7, 1]
    - filter: mlp
      value: [1, 0.5, 0.7, 0.3, 0]
    - value: 0.5
dtype: bfloat16

💻 Usage

!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "Isaak-Carter/J.O.S.I.E.3-Beta12-7B-slerp"
messages = [{"role": "user", "content": "What is a large language model?"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])

Evaluation results:

{
    "all": {
        "acc": 0.635008846776534,
        "acc_stderr": 0.03244450973873997,
        "acc_norm": 0.6365238167399629,
        "acc_norm_stderr": 0.033101612504829854,
        "mc1": 0.397796817625459,
        "mc1_stderr": 0.017133934248559635,
        "mc2": 0.5816259277988214,
        "mc2_stderr": 0.01521267822060948
    },
    "harness|arc:challenge|25": {
        "acc": 0.6220136518771331,
        "acc_stderr": 0.0141696645203031,
        "acc_norm": 0.6459044368600683,
        "acc_norm_stderr": 0.013975454122756557
    },
    "harness|hellaswag|10": {
        "acc": 0.6512646883091018,
        "acc_stderr": 0.004755960559929163,
        "acc_norm": 0.8397729535949015,
        "acc_norm_stderr": 0.003660668242740655
    },
    "harness|hendrycksTest-abstract_algebra|5": {
        "acc": 0.4,
        "acc_stderr": 0.04923659639173309,
        "acc_norm": 0.4,
        "acc_norm_stderr": 0.04923659639173309
    },
    "harness|hendrycksTest-anatomy|5": {
        "acc": 0.5703703703703704,
        "acc_stderr": 0.042763494943765995,
        "acc_norm": 0.5703703703703704,
        "acc_norm_stderr": 0.042763494943765995
    },
    "harness|hendrycksTest-astronomy|5": {
        "acc": 0.6842105263157895,
        "acc_stderr": 0.0378272898086547,
        "acc_norm": 0.6842105263157895,
        "acc_norm_stderr": 0.0378272898086547
    },
    "harness|hendrycksTest-business_ethics|5": {
        "acc": 0.58,
        "acc_stderr": 0.049604496374885836,
        "acc_norm": 0.58,
        "acc_norm_stderr": 0.049604496374885836
    },
    "harness|hendrycksTest-clinical_knowledge|5": {
        "acc": 0.6792452830188679,
        "acc_stderr": 0.028727502957880267,
        "acc_norm": 0.6792452830188679,
        "acc_norm_stderr": 0.028727502957880267
    },
    "harness|hendrycksTest-college_biology|5": {
        "acc": 0.7361111111111112,
        "acc_stderr": 0.03685651095897532,
        "acc_norm": 0.7361111111111112,
        "acc_norm_stderr": 0.03685651095897532
    },
    "harness|hendrycksTest-college_chemistry|5": {
        "acc": 0.54,
        "acc_stderr": 0.05009082659620332,
        "acc_norm": 0.54,
        "acc_norm_stderr": 0.05009082659620332
    },
    "harness|hendrycksTest-college_computer_science|5": {
        "acc": 0.51,
        "acc_stderr": 0.05024183937956912,
        "acc_norm": 0.51,
        "acc_norm_stderr": 0.05024183937956912
    },
    "harness|hendrycksTest-college_mathematics|5": {
        "acc": 0.29,
        "acc_stderr": 0.04560480215720684,
        "acc_norm": 0.29,
        "acc_norm_stderr": 0.04560480215720684
    },
    "harness|hendrycksTest-college_medicine|5": {
        "acc": 0.6416184971098265,
        "acc_stderr": 0.036563436533531585,
        "acc_norm": 0.6416184971098265,
        "acc_norm_stderr": 0.036563436533531585
    },
    "harness|hendrycksTest-college_physics|5": {
        "acc": 0.3235294117647059,
        "acc_stderr": 0.04655010411319619,
        "acc_norm": 0.3235294117647059,
        "acc_norm_stderr": 0.04655010411319619
    },
    "harness|hendrycksTest-computer_security|5": {
        "acc": 0.76,
        "acc_stderr": 0.04292346959909283,
        "acc_norm": 0.76,
        "acc_norm_stderr": 0.04292346959909283
    },
    "harness|hendrycksTest-conceptual_physics|5": {
        "acc": 0.5829787234042553,
        "acc_stderr": 0.03223276266711712,
        "acc_norm": 0.5829787234042553,
        "acc_norm_stderr": 0.03223276266711712
    },
    "harness|hendrycksTest-econometrics|5": {
        "acc": 0.4649122807017544,
        "acc_stderr": 0.046920083813689104,
        "acc_norm": 0.4649122807017544,
        "acc_norm_stderr": 0.046920083813689104
    },
    "harness|hendrycksTest-electrical_engineering|5": {
        "acc": 0.5517241379310345,
        "acc_stderr": 0.04144311810878152,
        "acc_norm": 0.5517241379310345,
        "acc_norm_stderr": 0.04144311810878152
    },
    "harness|hendrycksTest-elementary_mathematics|5": {
        "acc": 0.42063492063492064,
        "acc_stderr": 0.025424835086924006,
        "acc_norm": 0.42063492063492064,
        "acc_norm_stderr": 0.025424835086924006
    },
    "harness|hendrycksTest-formal_logic|5": {
        "acc": 0.4444444444444444,
        "acc_stderr": 0.044444444444444495,
        "acc_norm": 0.4444444444444444,
        "acc_norm_stderr": 0.044444444444444495
    },
    "harness|hendrycksTest-global_facts|5": {
        "acc": 0.44,
        "acc_stderr": 0.04988876515698589,
        "acc_norm": 0.44,
        "acc_norm_stderr": 0.04988876515698589
    },
    "harness|hendrycksTest-high_school_biology|5": {
        "acc": 0.7548387096774194,
        "acc_stderr": 0.024472243840895525,
        "acc_norm": 0.7548387096774194,
        "acc_norm_stderr": 0.024472243840895525
    },
    "harness|hendrycksTest-high_school_chemistry|5": {
        "acc": 0.5024630541871922,
        "acc_stderr": 0.035179450386910616,
        "acc_norm": 0.5024630541871922,
        "acc_norm_stderr": 0.035179450386910616
    },
    "harness|hendrycksTest-high_school_computer_science|5": {
        "acc": 0.66,
        "acc_stderr": 0.04760952285695237,
        "acc_norm": 0.66,
        "acc_norm_stderr": 0.04760952285695237
    },
    "harness|hendrycksTest-high_school_european_history|5": {
        "acc": 0.7818181818181819,
        "acc_stderr": 0.03225078108306289,
        "acc_norm": 0.7818181818181819,
        "acc_norm_stderr": 0.03225078108306289
    },
    "harness|hendrycksTest-high_school_geography|5": {
        "acc": 0.797979797979798,
        "acc_stderr": 0.02860620428922988,
        "acc_norm": 0.797979797979798,
        "acc_norm_stderr": 0.02860620428922988
    },
    "harness|hendrycksTest-high_school_government_and_politics|5": {
        "acc": 0.8756476683937824,
        "acc_stderr": 0.023814477086593552,
        "acc_norm": 0.8756476683937824,
        "acc_norm_stderr": 0.023814477086593552
    },
    "harness|hendrycksTest-high_school_macroeconomics|5": {
        "acc": 0.658974358974359,
        "acc_stderr": 0.02403548967633509,
        "acc_norm": 0.658974358974359,
        "acc_norm_stderr": 0.02403548967633509
    },
    "harness|hendrycksTest-high_school_mathematics|5": {
        "acc": 0.32592592592592595,
        "acc_stderr": 0.02857834836547308,
        "acc_norm": 0.32592592592592595,
        "acc_norm_stderr": 0.02857834836547308
    },
    "harness|hendrycksTest-high_school_microeconomics|5": {
        "acc": 0.6638655462184874,
        "acc_stderr": 0.030684737115135363,
        "acc_norm": 0.6638655462184874,
        "acc_norm_stderr": 0.030684737115135363
    },
    "harness|hendrycksTest-high_school_physics|5": {
        "acc": 0.304635761589404,
        "acc_stderr": 0.03757949922943344,
        "acc_norm": 0.304635761589404,
        "acc_norm_stderr": 0.03757949922943344
    },
    "harness|hendrycksTest-high_school_psychology|5": {
        "acc": 0.8238532110091743,
        "acc_stderr": 0.016332882393431353,
        "acc_norm": 0.8238532110091743,
        "acc_norm_stderr": 0.016332882393431353
    },
    "harness|hendrycksTest-high_school_statistics|5": {
        "acc": 0.5092592592592593,
        "acc_stderr": 0.03409386946992699,
        "acc_norm": 0.5092592592592593,
        "acc_norm_stderr": 0.03409386946992699
    },
    "harness|hendrycksTest-high_school_us_history|5": {
        "acc": 0.7990196078431373,
        "acc_stderr": 0.02812597226565437,
        "acc_norm": 0.7990196078431373,
        "acc_norm_stderr": 0.02812597226565437
    },
    "harness|hendrycksTest-high_school_world_history|5": {
        "acc": 0.759493670886076,
        "acc_stderr": 0.027820781981149685,
        "acc_norm": 0.759493670886076,
        "acc_norm_stderr": 0.027820781981149685
    },
    "harness|hendrycksTest-human_aging|5": {
        "acc": 0.6681614349775785,
        "acc_stderr": 0.03160295143776679,
        "acc_norm": 0.6681614349775785,
        "acc_norm_stderr": 0.03160295143776679
    },
    "harness|hendrycksTest-human_sexuality|5": {
        "acc": 0.7404580152671756,
        "acc_stderr": 0.03844876139785271,
        "acc_norm": 0.7404580152671756,
        "acc_norm_stderr": 0.03844876139785271
    },
    "harness|hendrycksTest-international_law|5": {
        "acc": 0.8016528925619835,
        "acc_stderr": 0.036401182719909456,
        "acc_norm": 0.8016528925619835,
        "acc_norm_stderr": 0.036401182719909456
    },
    "harness|hendrycksTest-jurisprudence|5": {
        "acc": 0.7777777777777778,
        "acc_stderr": 0.040191074725573483,
        "acc_norm": 0.7777777777777778,
        "acc_norm_stderr": 0.040191074725573483
    },
    "harness|hendrycksTest-logical_fallacies|5": {
        "acc": 0.754601226993865,
        "acc_stderr": 0.03380939813943354,
        "acc_norm": 0.754601226993865,
        "acc_norm_stderr": 0.03380939813943354
    },
    "harness|hendrycksTest-machine_learning|5": {
        "acc": 0.4732142857142857,
        "acc_stderr": 0.047389751192741546,
        "acc_norm": 0.4732142857142857,
        "acc_norm_stderr": 0.047389751192741546
    },
    "harness|hendrycksTest-management|5": {
        "acc": 0.7766990291262136,
        "acc_stderr": 0.04123553189891431,
        "acc_norm": 0.7766990291262136,
        "acc_norm_stderr": 0.04123553189891431
    },
    "harness|hendrycksTest-marketing|5": {
        "acc": 0.8632478632478633,
        "acc_stderr": 0.022509033937077802,
        "acc_norm": 0.8632478632478633,
        "acc_norm_stderr": 0.022509033937077802
    },
    "harness|hendrycksTest-medical_genetics|5": {
        "acc": 0.69,
        "acc_stderr": 0.04648231987117316,
        "acc_norm": 0.69,
        "acc_norm_stderr": 0.04648231987117316
    },
    "harness|hendrycksTest-miscellaneous|5": {
        "acc": 0.8173690932311622,
        "acc_stderr": 0.013816335389973141,
        "acc_norm": 0.8173690932311622,
        "acc_norm_stderr": 0.013816335389973141
    },
    "harness|hendrycksTest-moral_disputes|5": {
        "acc": 0.7254335260115607,
        "acc_stderr": 0.02402774515526502,
        "acc_norm": 0.7254335260115607,
        "acc_norm_stderr": 0.02402774515526502
    },
    "harness|hendrycksTest-moral_scenarios|5": {
        "acc": 0.27039106145251396,
        "acc_stderr": 0.014854993938010071,
        "acc_norm": 0.27039106145251396,
        "acc_norm_stderr": 0.014854993938010071
    },
    "harness|hendrycksTest-nutrition|5": {
        "acc": 0.7516339869281046,
        "acc_stderr": 0.02473998135511359,
        "acc_norm": 0.7516339869281046,
        "acc_norm_stderr": 0.02473998135511359
    },
    "harness|hendrycksTest-philosophy|5": {
        "acc": 0.7331189710610932,
        "acc_stderr": 0.025122637608816653,
        "acc_norm": 0.7331189710610932,
        "acc_norm_stderr": 0.025122637608816653
    },
    "harness|hendrycksTest-prehistory|5": {
        "acc": 0.7222222222222222,
        "acc_stderr": 0.024922001168886324,
        "acc_norm": 0.7222222222222222,
        "acc_norm_stderr": 0.024922001168886324
    },
    "harness|hendrycksTest-professional_accounting|5": {
        "acc": 0.46099290780141844,
        "acc_stderr": 0.02973659252642444,
        "acc_norm": 0.46099290780141844,
        "acc_norm_stderr": 0.02973659252642444
    },
    "harness|hendrycksTest-professional_law|5": {
        "acc": 0.4680573663624511,
        "acc_stderr": 0.012744149704869647,
        "acc_norm": 0.4680573663624511,
        "acc_norm_stderr": 0.012744149704869647
    },
    "harness|hendrycksTest-professional_medicine|5": {
        "acc": 0.6801470588235294,
        "acc_stderr": 0.02833295951403121,
        "acc_norm": 0.6801470588235294,
        "acc_norm_stderr": 0.02833295951403121
    },
    "harness|hendrycksTest-professional_psychology|5": {
        "acc": 0.6470588235294118,
        "acc_stderr": 0.01933314202079716,
        "acc_norm": 0.6470588235294118,
        "acc_norm_stderr": 0.01933314202079716
    },
    "harness|hendrycksTest-public_relations|5": {
        "acc": 0.6727272727272727,
        "acc_stderr": 0.0449429086625209,
        "acc_norm": 0.6727272727272727,
        "acc_norm_stderr": 0.0449429086625209
    },
    "harness|hendrycksTest-security_studies|5": {
        "acc": 0.6816326530612244,
        "acc_stderr": 0.029822533793982062,
        "acc_norm": 0.6816326530612244,
        "acc_norm_stderr": 0.029822533793982062
    },
    "harness|hendrycksTest-sociology|5": {
        "acc": 0.8507462686567164,
        "acc_stderr": 0.025196929874827072,
        "acc_norm": 0.8507462686567164,
        "acc_norm_stderr": 0.025196929874827072
    },
    "harness|hendrycksTest-us_foreign_policy|5": {
        "acc": 0.85,
        "acc_stderr": 0.035887028128263734,
        "acc_norm": 0.85,
        "acc_norm_stderr": 0.035887028128263734
    },
    "harness|hendrycksTest-virology|5": {
        "acc": 0.5180722891566265,
        "acc_stderr": 0.03889951252827216,
        "acc_norm": 0.5180722891566265,
        "acc_norm_stderr": 0.03889951252827216
    },
    "harness|hendrycksTest-world_religions|5": {
        "acc": 0.8362573099415205,
        "acc_stderr": 0.028380919596145866,
        "acc_norm": 0.8362573099415205,
        "acc_norm_stderr": 0.028380919596145866
    },
    "harness|truthfulqa:mc|0": {
        "mc1": 0.397796817625459,
        "mc1_stderr": 0.017133934248559635,
        "mc2": 0.5816259277988214,
        "mc2_stderr": 0.01521267822060948
    },
    "harness|winogrande|5": {
        "acc": 0.7963693764798737,
        "acc_stderr": 0.011317798781626913
    },
    "harness|gsm8k|5": {
        "acc": 0.5966641394996209,
        "acc_stderr": 0.013512654781814702
    }
}
Downloads last month
21
Safetensors
Model size
7.24B params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Goekdeniz-Guelmez/J.O.S.I.E.3-Beta12-7B-slerp