|
--- |
|
library_name: transformers |
|
license: apache-2.0 |
|
base_model: google-t5/t5-small |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- bleu |
|
model-index: |
|
- name: my_awesome_opus_books_model |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# my_awesome_opus_books_model |
|
|
|
This model is a fine-tuned version of [google-t5/t5-small](https://huggingface.co/google-t5/t5-small) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 3.0125 |
|
- Bleu: 2.6796 |
|
- Gen Len: 16.5723 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- num_epochs: 20 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |
|
|:-------------:|:-----:|:-----:|:---------------:|:------:|:-------:| |
|
| 4.0572 | 1.0 | 875 | 3.5403 | 0.6761 | 16.6389 | |
|
| 3.7186 | 2.0 | 1750 | 3.4207 | 1.0808 | 16.63 | |
|
| 3.6028 | 3.0 | 2625 | 3.3393 | 1.6106 | 16.6017 | |
|
| 3.5238 | 4.0 | 3500 | 3.2808 | 1.8017 | 16.5734 | |
|
| 3.4853 | 5.0 | 4375 | 3.2328 | 1.8614 | 16.5654 | |
|
| 3.4414 | 6.0 | 5250 | 3.1941 | 2.0524 | 16.5806 | |
|
| 3.3865 | 7.0 | 6125 | 3.1596 | 2.066 | 16.5949 | |
|
| 3.3489 | 8.0 | 7000 | 3.1347 | 2.209 | 16.5674 | |
|
| 3.3318 | 9.0 | 7875 | 3.1102 | 2.2722 | 16.582 | |
|
| 3.314 | 10.0 | 8750 | 3.0918 | 2.361 | 16.5643 | |
|
| 3.2818 | 11.0 | 9625 | 3.0754 | 2.4055 | 16.5391 | |
|
| 3.2743 | 12.0 | 10500 | 3.0600 | 2.4443 | 16.5766 | |
|
| 3.2624 | 13.0 | 11375 | 3.0497 | 2.5144 | 16.5469 | |
|
| 3.2403 | 14.0 | 12250 | 3.0389 | 2.5359 | 16.5914 | |
|
| 3.2363 | 15.0 | 13125 | 3.0311 | 2.6375 | 16.5534 | |
|
| 3.2109 | 16.0 | 14000 | 3.0243 | 2.6004 | 16.556 | |
|
| 3.2168 | 17.0 | 14875 | 3.0197 | 2.6429 | 16.5517 | |
|
| 3.1997 | 18.0 | 15750 | 3.0148 | 2.6728 | 16.5611 | |
|
| 3.1963 | 19.0 | 16625 | 3.0131 | 2.6555 | 16.58 | |
|
| 3.1958 | 20.0 | 17500 | 3.0125 | 2.6796 | 16.5723 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.46.2 |
|
- Pytorch 2.5.0+cu121 |
|
- Datasets 3.1.0 |
|
- Tokenizers 0.20.3 |
|
|