LLaMA2-13B-RFT / README.md
Nuo97's picture
Create README.md
1aa2cd7 verified
|
raw
history blame
8.44 kB
metadata
license: apache-2.0
datasets:
  - GraphWiz/GraphInstruct-RFT-72K
metrics:
  - accuracy
pipeline_tag: text-generation
tags:
  - graph problem

GraphWiz

Project Page: https://graph-wiz.github.io/

Paper: https://arxiv.org/abs/2402.16029.pdf

Code: https://github.com/nuochenpku/Graph-Reasoning-LLM

GraphWiz is a powerful instruction-following LLM that can map textural descriptions of graphs and structures, and then solve different graph problems explicitly in natural language.

Training strategies include two stages: Mixed-task Training and DPO Alignment.

Results

Models Cycle Connect Bipartite Topology Shortest Triangle Flow Hamilton Subgraph Average
In-Context Learning
GPT-4 (zero-shot) 38.75 17.00 65.25 5.00 9.25 5.75 3.25 59.25 45.50 27.67
GhatGPT (2-shot) 51.25 43.75 70.75 4.50 3.50 17.25 8.50 54.25 43.00 32.97
GPT-4 (2-shot) 52.50 62.75 74.25 25.25 18.25 31.00 7.75 {75.75} 46.75 43.81
Mistral-7B
Naive SFT 73.75 83.50 78.50 1.00 23.00 47.00 28.75 31.75 41.25 46.56
GraphWiz 92.00 89.50 72.00 19.00 31.25 38.75 29.25 26.50 85.50 53.75
GraphWiz-DPO 85.50 79.50 85.50 85.25 12.50 29.00 35.50 62.75 48.50 58.22
LLaMA 2-7B
Naive SFT 73.75 83.50 41.25 4.00 9.50 30.00 16.50 69.00 75.45 44.81
GraphWiz 91.50 87.00 74.00 18.00 28.00 38.25 24.50 52.25 82.25 55.08
GraphWiz-DPO 89.00 82.50 84.75 46.75 24.00 52.75 43.50 81.50 77.25 65.00
LLaMA 2-13B
Naive SFT 73.75 83.75 59.00 0.50 11.75 34.75 24.25 59.75 54.75 44.69
GraphWiz 94.75 87.00 78.00 28.00 27.75 36.00 24.50 59.00 81.50 57.39
GraphWiz-DPO 87.50 88.50 88.25 72.75 22.00 48.75 43.75 46.50 77.00 63.89

Examples

G-Q: Determine whether or not there is a cycle in an undirected graph. In an undirected graph..,the
 nodes are numbered from 0 to 88, and the edges are: (0, 73) (0, 51) (0, 10) (0, 63) (0, 28) (1, 62) (1, 57) (1, 84) (1, 61) (1, 5)
 (1, 24) (2, 84) (2, 3) (2, 66) (2, 68) (2, 17) (2, 35) (2, 34) (2, 15) (3, 39) (3, 52) (3, 16) (3, 15) (3, 8) (4, 69) (4, 85)
 (4, 36) (4, 72) (5, 44) (6, 77) (6, 7) (7, 85) (8, 64) (8, 23) (8, 28) (9, 34) (9, 31) (9, 61) (9, 28) (10, 26) (11, 37) (11, 39)
 (11, 19) (11, 64) (13, 73) (13, 61) (13, 80) (13, 85) (14, 86) (14, 59) (14, 32) (14, 58) (14, 85) (14, 66) (15, 43) (15, 48) (15, 73)
 (15, 19) (15, 47) (15, 68) (16, 46) (16, 60) (16, 84) (17, 44) (17, 72) (17, 36) (17, 37) (17, 61) (18, 20) (18, 24) (18, 22) (18, 41)
 (19, 45) (19, 83) (20, 25) (20, 29) (21, 38) (21, 64) (21, 24) (21, 22) (21, 34) (22, 23) (23, 34) (23, 30) (23, 83) (24, 47) (24, 50)
 (25, 59) (25, 42) (25, 70) (25, 72) (26, 45) (26, 30) (26, 87) (26, 80) (26, 50) (27, 77) (27, 58) (27, 60) (27, 29) (28, 36) (28, 59)
 (28, 88) (29, 31) (29, 33) (29, 56) (29, 55) (29, 78) (29, 73) (29, 82) (30, 34) (31, 58) (31, 70) (32, 78) (33, 73) (33, 68) (34, 48)
(34, 88) (34, 51) (34, 66) (34, 54) (35, 43) (35, 56) (36, 44) (36, 39) (37, 57) (37, 71) (38, 47) (38, 58) (38, 88) (39, 74) (39, 48)
 (39, 45) (39, 42) (40, 60) (40, 59) (40, 71) (40, 76) (41, 79) (42, 60) (42, 62) (42, 72) (43, 57) (44, 47) (44, 74) (44, 75) (44, 82)
 (44, 70) (45, 68) (45, 67) (45, 71) (46, 84) (47, 56) (48, 75) (49, 71) (49, 58) (50, 76) (51, 55) (51, 87) (51, 79) (52, 78) (56, 69)
(56, 83) (56, 79) (57, 76) (57, 70) (57, 72) (57, 78) (59, 70) (60, 80) (60, 76) (60, 77) (60, 75) (61, 74) (61, 77) (62, 84) (62, 66)
 (66, 69) (68, 88) (70, 88) (70, 76) (71, 81) (71, 72) (71, 86) (72, 75) (73, 82) (73, 83) (74, 85). Is there a cycle in this graph?


GraphWiz: 
There are many possible ways to find a cycle in this graph, but one example is: Starting from node 0, we can go to node 73 (via edge 0-73), then to node 82 (via edge 73-82),
then to node 44 (via edge 82-44), then to node 17 (via edge 44-17), then to node 36 (via edge 17-36), then to node 28 (via edge 36-28),
and back to node 0 (via edge 28-0). This forms a cycle [0-73-82-44-17-36-28-0] without revisiting any edge. So, there is a cycle in this graph.