distilbert-base-multilingual-cased-finetuned-ner-lenerBr
This model is a fine-tuned version of distilbert/distilbert-base-multilingual-cased on the lener_br dataset. It achieves the following results on the evaluation set:
- Loss: 0.1904
- Precision: 0.7960
- Recall: 0.7848
- F1: 0.7903
- Accuracy: 0.9591
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
No log | 1.0 | 490 | 0.2124 | 0.6794 | 0.6842 | 0.6818 | 0.9363 |
0.2601 | 2.0 | 980 | 0.1744 | 0.701 | 0.7485 | 0.7239 | 0.9486 |
0.0688 | 3.0 | 1470 | 0.1653 | 0.7344 | 0.7598 | 0.7469 | 0.9522 |
0.0375 | 4.0 | 1960 | 0.1868 | 0.7764 | 0.7429 | 0.7593 | 0.9546 |
0.0229 | 5.0 | 2450 | 0.1844 | 0.7748 | 0.7854 | 0.7801 | 0.9560 |
0.0162 | 6.0 | 2940 | 0.2072 | 0.6896 | 0.7929 | 0.7377 | 0.9462 |
0.0123 | 7.0 | 3430 | 0.1941 | 0.7612 | 0.7704 | 0.7658 | 0.9548 |
0.0078 | 8.0 | 3920 | 0.1900 | 0.7701 | 0.7909 | 0.7804 | 0.9581 |
0.0068 | 9.0 | 4410 | 0.1884 | 0.8000 | 0.7822 | 0.7910 | 0.9593 |
0.0045 | 10.0 | 4900 | 0.1904 | 0.7960 | 0.7848 | 0.7903 | 0.9591 |
Framework versions
- Transformers 4.41.1
- Pytorch 2.1.2
- Datasets 2.19.1
- Tokenizers 0.19.1
- Downloads last month
- 5
Model tree for GuiTap/distilbert-base-multilingual-cased-finetuned-ner-lenerBr
Dataset used to train GuiTap/distilbert-base-multilingual-cased-finetuned-ner-lenerBr
Evaluation results
- Precision on lener_brvalidation set self-reported0.796
- Recall on lener_brvalidation set self-reported0.785
- F1 on lener_brvalidation set self-reported0.790
- Accuracy on lener_brvalidation set self-reported0.959