GuiTap's picture
End of training
ae4485d verified
|
raw
history blame
2.94 kB
metadata
license: apache-2.0
base_model: distilbert/distilroberta-base
tags:
  - generated_from_trainer
datasets:
  - lener_br
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: distilroberta-base-finetuned-ner-lenerBr
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: lener_br
          type: lener_br
          config: lener_br
          split: validation
          args: lener_br
        metrics:
          - name: Precision
            type: precision
            value: 0.801254136909946
          - name: Recall
            type: recall
            value: 0.8429540040315191
          - name: F1
            type: f1
            value: 0.821575281300232
          - name: Accuracy
            type: accuracy
            value: 0.9685663231476382

distilroberta-base-finetuned-ner-lenerBr

This model is a fine-tuned version of distilbert/distilroberta-base on the lener_br dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1550
  • Precision: 0.8013
  • Recall: 0.8430
  • F1: 0.8216
  • Accuracy: 0.9686

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 490 0.1750 0.7347 0.6581 0.6942 0.9465
0.2808 2.0 980 0.1642 0.6954 0.7598 0.7262 0.9538
0.093 3.0 1470 0.1849 0.6708 0.7992 0.7294 0.9510
0.0557 4.0 1960 0.1403 0.7807 0.8345 0.8067 0.9668
0.0366 5.0 2450 0.1560 0.7775 0.8466 0.8106 0.9626
0.027 6.0 2940 0.1612 0.7342 0.8239 0.7764 0.9621
0.0204 7.0 3430 0.1632 0.7625 0.8356 0.7974 0.9644
0.015 8.0 3920 0.1748 0.7375 0.8442 0.7873 0.9615
0.0135 9.0 4410 0.1547 0.7930 0.8446 0.8180 0.9685
0.0101 10.0 4900 0.1550 0.8013 0.8430 0.8216 0.9686

Framework versions

  • Transformers 4.41.1
  • Pytorch 2.1.2
  • Datasets 2.19.1
  • Tokenizers 0.19.1