metadata
library_name: peft
datasets:
- HachiML/databricks-dolly-15k-ja-alpaca-format
language:
- en
- ja
JGLUE Score
I evaluated this model using the following JGLUE tasks. Here are the scores:
Task | Llama-2-13b-hf(*) | This Model |
---|---|---|
JCOMMONSENSEQA(acc) | 75.06 | 75.78 |
JNLI(acc) | 22.18 | 50.69 |
MARC_JA(acc) | 38.83 | 79.64 |
JSQUAD(exact_match) | 76.13 | 62.83 |
Average | 53.05 | 67.23 |
- Note: Use v0.3 prompt template
- The JGLUE scores were measured using the following script: Stability-AI/lm-evaluation-harness
How to use
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, AutoTokenizer
from peft import PeftModel
model_name = "meta-llama/Llama-2-13b-hf"
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.float16,
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
pt_model = AutoModelForCausalLM.from_pretrained(
model_name,
quantization_config=bnb_config,
)
peft_name = "HachiML/Llama-2-13b-hf-qlora-dolly-ja-2ep"
model = PeftModel.from_pretrained(
pt_model,
peft_name,
)
Training procedure
The following bitsandbytes
quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: float16
Framework versions
- PEFT 0.4.0