HamzaSidhu786's picture
End of training
fa8b98e verified
|
raw
history blame
2.95 kB
metadata
license: apache-2.0
base_model: facebook/wav2vec2-base
tags:
  - generated_from_trainer
datasets:
  - marsyas/gtzan
metrics:
  - accuracy
model-index:
  - name: HamzaSidhu786/distilhubert-finetuned-gtzan
    results:
      - task:
          name: Audio Classification
          type: audio-classification
        dataset:
          name: GTZAN
          type: marsyas/gtzan
          config: all
          split: train
          args: all
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.88

HamzaSidhu786/distilhubert-finetuned-gtzan

This model is a fine-tuned version of facebook/wav2vec2-base on the GTZAN dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6028
  • Accuracy: 0.88

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.0751 1.0 113 2.0343 0.6
1.5734 2.0 226 1.6338 0.58
1.3801 3.0 339 1.2674 0.7
1.0384 4.0 452 1.1376 0.68
0.973 5.0 565 0.9849 0.73
1.0033 6.0 678 0.7686 0.76
0.6347 7.0 791 0.5909 0.87
0.6537 8.0 904 0.9489 0.75
0.359 9.0 1017 0.7478 0.81
0.2268 10.0 1130 0.6247 0.84
0.2674 11.0 1243 0.6437 0.84
0.2237 12.0 1356 0.7997 0.81
0.1418 13.0 1469 0.7738 0.84
0.1201 14.0 1582 0.5696 0.87
0.019 15.0 1695 0.8173 0.84
0.0175 16.0 1808 0.6395 0.88
0.16 17.0 1921 0.6062 0.87
0.0137 18.0 2034 0.5422 0.9
0.0127 19.0 2147 0.6421 0.88
0.0129 20.0 2260 0.6028 0.88

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1