|
--- |
|
library_name: setfit |
|
tags: |
|
- setfit |
|
- sentence-transformers |
|
- text-classification |
|
- generated_from_setfit_trainer |
|
datasets: |
|
- dvilasuero/banking77-topics-setfit |
|
metrics: |
|
- accuracy |
|
widget: |
|
- text: I requested a refund, and never received it. What can I do? |
|
- text: I have a 1 euro fee on my statement. |
|
- text: I would like an account for my children, how do I go about doing this? |
|
- text: What do I need to do to transfer money into my account? |
|
- text: Which country's currency do you support? |
|
pipeline_tag: text-classification |
|
inference: true |
|
base_model: thenlper/gte-large |
|
model-index: |
|
- name: SetFit with thenlper/gte-large |
|
results: |
|
- task: |
|
type: text-classification |
|
name: Text Classification |
|
dataset: |
|
name: dvilasuero/banking77-topics-setfit |
|
type: dvilasuero/banking77-topics-setfit |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 0.9230769230769231 |
|
name: Accuracy |
|
--- |
|
|
|
# SetFit with thenlper/gte-large |
|
|
|
This is a [SetFit](https://github.com/huggingface/setfit) model trained on the [dvilasuero/banking77-topics-setfit](https://huggingface.co/datasets/dvilasuero/banking77-topics-setfit) dataset that can be used for Text Classification. This SetFit model uses [thenlper/gte-large](https://huggingface.co/thenlper/gte-large) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. |
|
|
|
The model has been trained using an efficient few-shot learning technique that involves: |
|
|
|
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. |
|
2. Training a classification head with features from the fine-tuned Sentence Transformer. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** SetFit |
|
- **Sentence Transformer body:** [thenlper/gte-large](https://huggingface.co/thenlper/gte-large) |
|
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance |
|
- **Maximum Sequence Length:** 512 tokens |
|
- **Number of Classes:** 8 classes |
|
- **Training Dataset:** [dvilasuero/banking77-topics-setfit](https://huggingface.co/datasets/dvilasuero/banking77-topics-setfit) |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) |
|
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) |
|
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) |
|
|
|
### Model Labels |
|
| Label | Examples | |
|
|:------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| |
|
| 2 | <ul><li>'The money I transferred does not show in the balance.'</li><li>'I was wondering how I could have two charges for the same item happen more than once in a 7 day period. Is there anyway I could get this corrected asap.'</li><li>'What is the source of my available funds?'</li></ul> | |
|
| 0 | <ul><li>'Do you support the EU?'</li><li>"Can you freeze my account? I just saw there are transactions on my account that I don't recognize. How can I fix this?"</li><li>'Please close my account. I am unsatisfied with your service.'</li></ul> | |
|
| 5 | <ul><li>'Are you able to unblock my pin?'</li><li>'I can not find my card pin.'</li><li>'If I need a PIN for my card, where is it located?'</li></ul> | |
|
| 1 | <ul><li>"I can't get money out of the ATM"</li><li>'Where can I use this card at an ATM?'</li><li>'Can I use my card at any ATMs?'</li></ul> | |
|
| 3 | <ul><li>'Can I get cash with this card anywhere?'</li><li>'Can you please show me where I can find the location to link my card?'</li><li>'Am I able to get a card in EU?'</li></ul> | |
|
| 6 | <ul><li>'My friends want to top up my account'</li><li>'Can I be topped up once I hit a certain balance?'</li><li>'Can you tell me why my top up was reverted?'</li></ul> | |
|
| 7 | <ul><li>'How do I send my account money through transfer?'</li><li>'How do I transfer money to my account?'</li><li>'How can I transfer money from an outside bank?'</li></ul> | |
|
| 4 | <ul><li>'Do you work with all fiat currencies?'</li><li>'Can I exchange to EUR?'</li><li>'Is my country supported'</li></ul> | |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
| Label | Accuracy | |
|
|:--------|:---------| |
|
| **all** | 0.9231 | |
|
|
|
## Uses |
|
|
|
### Direct Use for Inference |
|
|
|
First install the SetFit library: |
|
|
|
```bash |
|
pip install setfit |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
|
|
```python |
|
from setfit import SetFitModel |
|
|
|
# Download from the 🤗 Hub |
|
model = SetFitModel.from_pretrained("HarshalBhg/gte-large-setfit-train-test2") |
|
# Run inference |
|
preds = model("I have a 1 euro fee on my statement.") |
|
``` |
|
|
|
<!-- |
|
### Downstream Use |
|
|
|
*List how someone could finetune this model on their own dataset.* |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Set Metrics |
|
| Training set | Min | Median | Max | |
|
|:-------------|:----|:--------|:----| |
|
| Word count | 4 | 10.5833 | 40 | |
|
|
|
| Label | Training Sample Count | |
|
|:------|:----------------------| |
|
| 0 | 10 | |
|
| 1 | 19 | |
|
| 2 | 28 | |
|
| 3 | 36 | |
|
| 4 | 13 | |
|
| 5 | 14 | |
|
| 6 | 15 | |
|
| 7 | 21 | |
|
|
|
### Training Hyperparameters |
|
- batch_size: (16, 16) |
|
- num_epochs: (1, 1) |
|
- max_steps: -1 |
|
- sampling_strategy: oversampling |
|
- num_iterations: 20 |
|
- body_learning_rate: (2e-05, 1e-05) |
|
- head_learning_rate: 0.01 |
|
- loss: CosineSimilarityLoss |
|
- distance_metric: cosine_distance |
|
- margin: 0.25 |
|
- end_to_end: False |
|
- use_amp: False |
|
- warmup_proportion: 0.1 |
|
- seed: 42 |
|
- eval_max_steps: -1 |
|
- load_best_model_at_end: False |
|
|
|
### Training Results |
|
| Epoch | Step | Training Loss | Validation Loss | |
|
|:------:|:----:|:-------------:|:---------------:| |
|
| 0.0026 | 1 | 0.3183 | - | |
|
| 0.1282 | 50 | 0.0614 | - | |
|
| 0.2564 | 100 | 0.0044 | - | |
|
| 0.3846 | 150 | 0.001 | - | |
|
| 0.5128 | 200 | 0.0008 | - | |
|
| 0.6410 | 250 | 0.001 | - | |
|
| 0.7692 | 300 | 0.0006 | - | |
|
| 0.8974 | 350 | 0.0012 | - | |
|
|
|
### Framework Versions |
|
- Python: 3.10.12 |
|
- SetFit: 1.0.1 |
|
- Sentence Transformers: 2.2.2 |
|
- Transformers: 4.35.2 |
|
- PyTorch: 2.1.0+cu121 |
|
- Datasets: 2.15.0 |
|
- Tokenizers: 0.15.0 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
```bibtex |
|
@article{https://doi.org/10.48550/arxiv.2209.11055, |
|
doi = {10.48550/ARXIV.2209.11055}, |
|
url = {https://arxiv.org/abs/2209.11055}, |
|
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, |
|
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, |
|
title = {Efficient Few-Shot Learning Without Prompts}, |
|
publisher = {arXiv}, |
|
year = {2022}, |
|
copyright = {Creative Commons Attribution 4.0 International} |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |