|
--- |
|
tags: |
|
- translation |
|
license: cc-by-4.0 |
|
--- |
|
|
|
### opus-mt-ru-en |
|
|
|
## Table of Contents |
|
- [Model Details](#model-details) |
|
- [Uses](#uses) |
|
- [Risks, Limitations and Biases](#risks-limitations-and-biases) |
|
- [Training](#training) |
|
- [Evaluation](#evaluation) |
|
- [Citation Information](#citation-information) |
|
- [How to Get Started With the Model](#how-to-get-started-with-the-model) |
|
|
|
## Model Details |
|
**Model Description:** |
|
- **Developed by:** Language Technology Research Group at the University of Helsinki |
|
- **Model Type:** Transformer-align |
|
- **Language(s):** |
|
- Source Language: Russian |
|
- Target Language: English |
|
- **License:** CC-BY-4.0 |
|
- **Resources for more information:** |
|
- [GitHub Repo](https://github.com/Helsinki-NLP/OPUS-MT-train) |
|
|
|
|
|
|
|
## Uses |
|
|
|
#### Direct Use |
|
|
|
This model can be used for translation and text-to-text generation. |
|
|
|
|
|
## Risks, Limitations and Biases |
|
|
|
**CONTENT WARNING: Readers should be aware this section contains content that is disturbing, offensive, and can propagate historical and current stereotypes.** |
|
|
|
Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)). |
|
|
|
Further details about the dataset for this model can be found in the OPUS readme: [ru-en](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/ru-en/README.md) |
|
|
|
## Training |
|
#### Training Data |
|
##### Preprocessing |
|
* Pre-processing: Normalization + SentencePiece |
|
* Dataset: [opus](https://github.com/Helsinki-NLP/Opus-MT) |
|
* Download original weights: [opus-2020-02-26.zip](https://object.pouta.csc.fi/OPUS-MT-models/ru-en/opus-2020-02-26.zip) |
|
|
|
* Test set translations: [opus-2020-02-26.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/ru-en/opus-2020-02-26.test.txt) |
|
|
|
|
|
## Evaluation |
|
|
|
#### Results |
|
|
|
* test set scores: [opus-2020-02-26.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/ru-en/opus-2020-02-26.eval.txt) |
|
|
|
#### Benchmarks |
|
|
|
| testset | BLEU | chr-F | |
|
|-----------------------|-------|-------| |
|
| newstest2012.ru.en | 34.8 | 0.603 | |
|
| newstest2013.ru.en | 27.9 | 0.545 | |
|
| newstest2014-ruen.ru.en | 31.9 | 0.591 | |
|
| newstest2015-enru.ru.en | 30.4 | 0.568 | |
|
| newstest2016-enru.ru.en | 30.1 | 0.565 | |
|
| newstest2017-enru.ru.en | 33.4 | 0.593 | |
|
| newstest2018-enru.ru.en | 29.6 | 0.565 | |
|
| newstest2019-ruen.ru.en | 31.4 | 0.576 | |
|
| Tatoeba.ru.en | 61.1 | 0.736 | |
|
|
|
## Citation Information |
|
|
|
```bibtex |
|
@InProceedings{TiedemannThottingal:EAMT2020, |
|
author = {J{\"o}rg Tiedemann and Santhosh Thottingal}, |
|
title = {{OPUS-MT} — {B}uilding open translation services for the {W}orld}, |
|
booktitle = {Proceedings of the 22nd Annual Conferenec of the European Association for Machine Translation (EAMT)}, |
|
year = {2020}, |
|
address = {Lisbon, Portugal} |
|
} |
|
``` |
|
|
|
## How to Get Started With the Model |
|
|
|
```python |
|
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-ru-en") |
|
|
|
model = AutoModelForSeq2SeqLM.from_pretrained("Helsinki-NLP/opus-mt-ru-en") |
|
``` |
|
|