metadata
tags:
- spacy
- token-classification
language:
- en
license: apache-2.0
widget:
- text: >-
But one other thing that we have to re;think is the way that we dy£ our
#c!l.o|th?£+s.
example_title: Word camouflage detection
model-index:
- name: en_roberta_base_leetspeak_ner
results:
- task:
name: NER
type: token-classification
metrics:
- name: NER Precision
type: precision
value: 0.7966001851
- name: NER Recall
type: recall
value: 0.8619559279
- name: NER F Score
type: f_score
value: 0.8279903783
Feature | Description |
---|---|
Name | en_roberta_base_leetspeak_ner |
Version | 0.0.0 |
spaCy | >=3.2.1,<3.3.0 |
Default Pipeline | transformer , ner |
Components | transformer , ner |
Vectors | 0 keys, 0 unique vectors (0 dimensions) |
Sources | roberta-base pre-trained model on English language using a masked language modeling (MLM) objective by Yinhan Liu et al. LeetSpeak-NER app where this model is in production for countering information disorders |
License | Apache 2.0 |
Author | Álvaro Huertas García at AI+DA |
Label Scheme
View label scheme (4 labels for 1 components)
Component | Labels |
---|---|
ner |
INV_CAMO , LEETSPEAK , MIX , PUNCT_CAMO |
Accuracy
Type | Score |
---|---|
ENTS_F |
82.80 |
ENTS_P |
79.66 |
ENTS_R |
86.20 |
TRANSFORMER_LOSS |
177808.42 |
NER_LOSS |
608427.31 |