kashif HF staff commited on
Commit
af975d2
1 Parent(s): a213c02

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +5 -118
README.md CHANGED
@@ -35,13 +35,10 @@ SmolVLM is a compact open multimodal model that accepts arbitrary sequences of i
35
 
36
  ## Uses
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
 
40
  ### Direct Use
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
 
46
  ### Downstream Use [optional]
47
 
@@ -77,124 +74,14 @@ Use the code below to get started with the model.
77
 
78
  ### Training Data
79
 
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
 
84
  ### Training Procedure
85
 
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
- ## Model Examination [optional]
134
-
135
- <!-- Relevant interpretability work for the model goes here -->
136
-
137
- [More Information Needed]
138
-
139
- ## Environmental Impact
140
-
141
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
142
-
143
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
144
-
145
- - **Hardware Type:** [More Information Needed]
146
- - **Hours used:** [More Information Needed]
147
- - **Cloud Provider:** [More Information Needed]
148
- - **Compute Region:** [More Information Needed]
149
- - **Carbon Emitted:** [More Information Needed]
150
-
151
- ## Technical Specifications [optional]
152
-
153
- ### Model Architecture and Objective
154
-
155
- [More Information Needed]
156
-
157
- ### Compute Infrastructure
158
-
159
- [More Information Needed]
160
-
161
- #### Hardware
162
-
163
- [More Information Needed]
164
-
165
- #### Software
166
-
167
- [More Information Needed]
168
-
169
- ## Citation [optional]
170
-
171
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
172
 
173
- **BibTeX:**
174
-
175
- [More Information Needed]
176
-
177
- **APA:**
178
-
179
- [More Information Needed]
180
-
181
- ## Glossary [optional]
182
-
183
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
184
-
185
- [More Information Needed]
186
-
187
- ## More Information [optional]
188
-
189
- [More Information Needed]
190
-
191
- ## Model Card Authors [optional]
192
-
193
- [More Information Needed]
194
-
195
- ## Model Card Contact
196
-
197
- [More Information Needed]
198
  ### Framework versions
199
 
200
  - PEFT 0.13.2
 
35
 
36
  ## Uses
37
 
38
+ SmolVLM can be used for inference on multimodal (image + text) tasks where the input comprises text queries along with one or more images. Text and images can be interleaved arbitrarily, enabling tasks like image captioning, visual question answering, and storytelling based on visual content. The model does not support image generation.
39
 
40
  ### Direct Use
41
 
 
 
 
42
 
43
  ### Downstream Use [optional]
44
 
 
74
 
75
  ### Training Data
76
 
77
+ [ HuggingFaceH4/rlaif-v_formatted](HTTP://huggingface.co/HuggingFaceH4/rlaif-v_formatted)
 
 
78
 
79
  ### Training Procedure
80
 
81
+ ```bash
82
+ accelerate launch --config_file examples/accelerate_configs/multi_gpu.yaml examples/scripts/dpo_vlm.py --dataset_name HuggingFaceH4/rlaif-v_formatted --model_name_or_path HuggingFaceTB/SmolVLM-Instruct --per_device_train_batch_size 8 --gradient_accumulation_steps 32 --dataset_num_proc 32 --output_dir dpo_smolvlm_rlaif-v --bf16 --torch_dtype bfloat16 --use_peft --lora_target_modules=all-linear exit
83
+ ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
84
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
85
  ### Framework versions
86
 
87
  - PEFT 0.13.2