Update README.md
Browse files
README.md
CHANGED
@@ -1,199 +1,79 @@
|
|
1 |
---
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
4 |
---
|
5 |
|
6 |
-
# Model Card
|
7 |
|
8 |
-
|
9 |
|
|
|
|
|
10 |
|
|
|
|
|
11 |
|
12 |
-
##
|
13 |
|
14 |
-
###
|
15 |
|
16 |
-
|
|
|
17 |
|
18 |
-
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
- **Model type:** [More Information Needed]
|
24 |
-
- **Language(s) (NLP):** [More Information Needed]
|
25 |
-
- **License:** [More Information Needed]
|
26 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
|
28 |
-
|
|
|
29 |
|
30 |
-
|
|
|
31 |
|
32 |
-
|
33 |
-
|
34 |
-
|
|
|
35 |
|
36 |
-
##
|
37 |
|
38 |
-
|
39 |
|
40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
|
42 |
-
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
-
|
45 |
-
|
46 |
-
### Downstream Use [optional]
|
47 |
-
|
48 |
-
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
-
|
50 |
-
[More Information Needed]
|
51 |
-
|
52 |
-
### Out-of-Scope Use
|
53 |
-
|
54 |
-
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
-
|
56 |
-
[More Information Needed]
|
57 |
-
|
58 |
-
## Bias, Risks, and Limitations
|
59 |
-
|
60 |
-
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
-
|
62 |
-
[More Information Needed]
|
63 |
-
|
64 |
-
### Recommendations
|
65 |
-
|
66 |
-
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
-
|
68 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
-
|
70 |
-
## How to Get Started with the Model
|
71 |
-
|
72 |
-
Use the code below to get started with the model.
|
73 |
-
|
74 |
-
[More Information Needed]
|
75 |
-
|
76 |
-
## Training Details
|
77 |
-
|
78 |
-
### Training Data
|
79 |
-
|
80 |
-
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
-
|
82 |
-
[More Information Needed]
|
83 |
-
|
84 |
-
### Training Procedure
|
85 |
-
|
86 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
-
|
88 |
-
#### Preprocessing [optional]
|
89 |
-
|
90 |
-
[More Information Needed]
|
91 |
-
|
92 |
-
|
93 |
-
#### Training Hyperparameters
|
94 |
-
|
95 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
-
|
97 |
-
#### Speeds, Sizes, Times [optional]
|
98 |
-
|
99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
-
|
101 |
-
[More Information Needed]
|
102 |
|
|
|
|
|
|
|
|
|
|
|
103 |
## Evaluation
|
|
|
104 |
|
105 |
-
|
106 |
-
|
107 |
-
### Testing Data, Factors & Metrics
|
108 |
-
|
109 |
-
#### Testing Data
|
110 |
-
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
-
|
115 |
-
#### Factors
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Contact
|
198 |
-
|
199 |
-
[More Information Needed]
|
|
|
1 |
---
|
2 |
+
license: apache-2.0
|
3 |
+
datasets:
|
4 |
+
- HuggingFaceTB/finemath
|
5 |
+
language:
|
6 |
+
- en
|
7 |
+
base_model:
|
8 |
+
- meta-llama/Llama-3.2-3B
|
9 |
---
|
10 |
|
11 |
+
# Model Card
|
12 |
|
13 |
+
## Model summary
|
14 |
|
15 |
+
This model is part of the 📐 [FineMath](https://huggingface.co/datasets/HuggingFaceTB/finemath) ablations, we continue pretraining [Llama-3.2-3B](https://huggingface.co/meta-llama/Llama-3.2-3B) base on different math datasets for 60B tokens.
|
16 |
+
The model has 3.21B parameters and 4096 context length. It was trained on **160B tokens** using a mix of 40% [FineWeb-Edu](https://huggingface.co/datasets/HuggingFaceFW/fineweb-edu) and 30% FineMath-4+ and 30% InfiWebMath-4+ from the 📐 [FineMath](https://huggingface.co/datasets/HuggingFaceTB/finemath) dataset.
|
17 |
|
18 |
+
- **License**: Apache-2
|
19 |
+
- **Languages**: English
|
20 |
|
21 |
+
## Use
|
22 |
|
23 |
+
### Intended use
|
24 |
|
25 |
+
This model was trained on English math data and is not instruction-tuned, making it intended for text completion in English with a focus on math.
|
26 |
+
It is important to note that the primary intended use case of this model is to compare its performance with other models trained under the same conditions. This model is not necessarily the best possible outcome achievable with the given dataset.
|
27 |
|
28 |
+
### Generation
|
29 |
|
30 |
+
```python
|
31 |
+
# pip install -q transformers
|
32 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
|
|
|
|
|
|
|
33 |
|
34 |
+
model = "HuggingFaceTB/finemath-ablation-finemath-infimath-4plus"
|
35 |
+
device = "cuda" # for GPU usage or "cpu" for CPU usage
|
36 |
|
37 |
+
tokenizer = AutoTokenizer.from_pretrained(model)
|
38 |
+
model = AutoModelForCausalLM.from_pretrained(model).to(device)
|
39 |
|
40 |
+
inputs = tokenizer.encode("Machine Learning is", return_tensors="pt").to(device)
|
41 |
+
outputs = model.generate(inputs)
|
42 |
+
print(tokenizer.decode(outputs[0]))
|
43 |
+
```
|
44 |
|
45 |
+
## Intermediate checkpoints
|
46 |
|
47 |
+
We are releasing intermediate checkpoints for this model at intervals of every 10000 training steps (10B tokens) in separate branches. The naming convention is `10B`.
|
48 |
|
49 |
+
You can load a specific model revision with `transformers` using the argument `revision`:
|
50 |
+
```python
|
51 |
+
model = AutoModelForCausalLM.from_pretrained("HuggingFaceTB/finemath-ablation-finemath-infimath-4plus", revision="10B")
|
52 |
+
```
|
53 |
+
You can access all the revisions for the models via the following code:
|
54 |
+
```python
|
55 |
+
from huggingface_hub import list_repo_refs
|
56 |
+
out = list_repo_refs("HuggingFaceTB/finemath-ablation-finemath-infimath-4plus")
|
57 |
+
print([b.name for b in out.branches])
|
58 |
+
```
|
59 |
|
60 |
+
## Training
|
61 |
+
### Model
|
62 |
+
- **Architecture**: Llama3
|
63 |
+
- **Pretraining steps**: 60k
|
64 |
+
- **Pretraining tokens**: 60B
|
65 |
+
- **Precision**: bfloat16
|
66 |
|
67 |
+
### Hardware
|
68 |
+
- **GPUs**: 64 H100
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
|
70 |
+
### Software
|
71 |
+
- [nanotron](https://github.com/huggingface/nanotron/) for training
|
72 |
+
- [datatrove](https://github.com/huggingface/datatrove) for tokenization
|
73 |
+
- [lighteval](https://github.com/huggingface/lighteval) for evaluation
|
74 |
+
|
75 |
## Evaluation
|
76 |
+
We used the SmolLM2 setup to evaluate all our ablation models with `lighteval`. You can find the details here: https://github.com/huggingface/smollm/tree/main/evaluation#smollm2-base-models
|
77 |
|
78 |
+
## Limitations
|
79 |
+
This model was predominantly trained on English math data, potentially limiting its performance in other languages. Furthermore, the model's behavior is influenced by the quality and diversity of its training data, which may include biases and harmful content.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|