metadata
license: apache-2.0
base_model: facebook/wav2vec2-xls-r-300m
tags:
- generated_from_trainer
datasets:
- audiofolder
metrics:
- wer
model-index:
- name: wav2vec2-large-xls-r-300m-urdu-colab
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: audiofolder
type: audiofolder
config: default
split: train
args: default
metrics:
- name: Wer
type: wer
value: 0.42745782431646306
wav2vec2-large-xls-r-300m-urdu-colab
This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the audiofolder dataset. It achieves the following results on the evaluation set:
- Loss: inf
- Wer: 0.4275
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 20
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
6.0615 | 3.09 | 400 | inf | 0.9448 |
0.8996 | 6.18 | 800 | inf | 0.5206 |
0.4001 | 9.27 | 1200 | inf | 0.4890 |
0.2377 | 12.36 | 1600 | inf | 0.4609 |
0.1599 | 15.44 | 2000 | inf | 0.4407 |
0.1156 | 18.53 | 2400 | inf | 0.4275 |
Framework versions
- Transformers 4.32.0.dev0
- Pytorch 2.0.1+cu118
- Datasets 1.18.3
- Tokenizers 0.13.3