|
--- |
|
language: |
|
- zh |
|
license: apache-2.0 |
|
|
|
tags: |
|
- bert |
|
- NLU |
|
- NLI |
|
|
|
inference: |
|
parameters: |
|
max_new_tokens: 64 |
|
|
|
|
|
widget: |
|
- text: "今天心情不好[SEP]今天很开心" |
|
|
|
--- |
|
# Erlangshen-Roberta-330M-Similarity, model (Chinese),one model of [Fengshenbang-LM](https://github.com/IDEA-CCNL/Fengshenbang-LM). |
|
We collect 20 paraphrace datasets in the Chinese domain for finetune, with a total of 2773880 samples. Our model is mainly based on [roberta](https://huggingface.co/hfl/chinese-roberta-wwm-ext-large) |
|
|
|
## Usage |
|
```python |
|
from transformers import BertForSequenceClassification |
|
from transformers import BertTokenizer |
|
import torch |
|
|
|
tokenizer=BertTokenizer.from_pretrained('IDEA-CCNL/Erlangshen-Roberta-330M-Similarity') |
|
model=BertForSequenceClassification.from_pretrained('IDEA-CCNL/Erlangshen-Roberta-330M-Similarity') |
|
|
|
texta='今天的饭不好吃' |
|
textb='今天心情不好' |
|
|
|
output=model(torch.tensor([tokenizer.encode(texta,textb)])) |
|
print(torch.nn.functional.softmax(output.logits,dim=-1)) |
|
|
|
``` |
|
## Scores on downstream chinese tasks(The dev datasets of BUSTM and AFQMC may exist in the train set) |
|
| Model | BQ | BUSTM | AFQMC | |
|
| :--------: | :-----: | :----: | :-----: | |
|
| Erlangshen-Roberta-110M-Similarity | 85.41 | 95.18 | 81.72 | |
|
| Erlangshen-Roberta-330M-Similarity | 86.21 | 99.29 | 93.89 | |
|
|
|
## Citation |
|
If you find the resource is useful, please cite the following website in your paper. |
|
``` |
|
@misc{Fengshenbang-LM, |
|
title={Fengshenbang-LM}, |
|
author={IDEA-CCNL}, |
|
year={2021}, |
|
howpublished={\url{https://github.com/IDEA-CCNL/Fengshenbang-LM}}, |
|
} |
|
``` |