Update README.md
#13
by
Qianguo
- opened
README.md
CHANGED
@@ -20,8 +20,14 @@ language:
|
|
20 |
|
21 |
姜子牙通用大模型V1是基于LLaMa的130亿参数的大规模预训练模型,具备翻译,编程,文本分类,信息抽取,摘要,文案生成,常识问答和数学计算等能力。目前姜子牙通用大模型已完成大规模预训练、多任务有监督微调和人类反馈学习三阶段的训练过程。
|
22 |
|
|
|
|
|
|
|
23 |
The Ziya-LLaMA-13B-v1 is a large-scale pre-trained model based on LLaMA with 13 billion parameters. It has the ability to perform tasks such as translation, programming, text classification, information extraction, summarization, copywriting, common sense Q&A, and mathematical calculation. The Ziya-LLaMA-13B-v1 has undergone three stages of training: large-scale continual pre-training (PT), multi-task supervised fine-tuning (SFT), and human feedback learning (RM, PPO).
|
24 |
|
|
|
|
|
|
|
25 |
## 模型分类 Model Taxonomy
|
26 |
|
27 |
| 需求 Demand | 任务 Task | 系列 Series | 模型 Model | 参数 Parameter | 额外 Extra |
|
|
|
20 |
|
21 |
姜子牙通用大模型V1是基于LLaMa的130亿参数的大规模预训练模型,具备翻译,编程,文本分类,信息抽取,摘要,文案生成,常识问答和数学计算等能力。目前姜子牙通用大模型已完成大规模预训练、多任务有监督微调和人类反馈学习三阶段的训练过程。
|
22 |
|
23 |
+
由于LLaMA权重的许可限制,该模型不能用于商业用途,请严格遵守LLaMA的使用政策。考虑到LLaMA权重的许可证限制,我们无法直接发布完整的模型权重。因此,我们使用了FastChat开源工具作为基础,并对其进行了进一步优化。我们计算并发布了Ziya-LLaMA-13B-v1权重与原始LLaMA权重之间的差异。用户可以使用以下脚本进行转换,以获取完整的Ziya-LLaMA-13B-v1权重。
|
24 |
+
https://github.com/IDEA-CCNL/Fengshenbang-LM/blob/dev_qianguo/fengshen/utils/apply_delta.py
|
25 |
+
|
26 |
The Ziya-LLaMA-13B-v1 is a large-scale pre-trained model based on LLaMA with 13 billion parameters. It has the ability to perform tasks such as translation, programming, text classification, information extraction, summarization, copywriting, common sense Q&A, and mathematical calculation. The Ziya-LLaMA-13B-v1 has undergone three stages of training: large-scale continual pre-training (PT), multi-task supervised fine-tuning (SFT), and human feedback learning (RM, PPO).
|
27 |
|
28 |
+
Due to the licensing restrictions of LLaMA weights, the utilization of the model for commercial purposes is precluded. Please strictly respect LLaMA's usage policy. Considering the licensing limitations on LLaMA weights, we are unable to directly release the complete model weights. Therefore, we utilized the open-source FastChat tool and further optimized it to calculate the differences between Ziya-LLaMA-13B-v1 weights and the original LLaMA weights. Users can apply the following script for conversion to obtain the complete Ziya-LLaMA-13B-v1 weights:
|
29 |
+
https://github.com/IDEA-CCNL/Fengshenbang-LM/blob/dev_qianguo/fengshen/utils/apply_delta.py
|
30 |
+
|
31 |
## 模型分类 Model Taxonomy
|
32 |
|
33 |
| 需求 Demand | 任务 Task | 系列 Series | 模型 Model | 参数 Parameter | 额外 Extra |
|