Exl2 version of Undi95/OpenDolphinMaid-4x7b
branch
main : 8bpw h8
b8h8 : 8bpw h8
Using ThePile 0007.parquet as dataset
Quantization settings : python convert.py -i models/flemmingmiguel_TurdusDareBeagle-7B -o TurdusDareBeagle-7B-temp -cf TurdusDareBeagle-7B-8bpw-h8-exl2 -c 0007.parquet -l 8192 -b 8 -hb 8 -ml 8192
below this line is original readme
TurdusDareBeagle-7B
TurdusDareBeagle-7B is a merge of the following models using LazyMergekit:
As an experiment to find the best base merge to further fine-tuning, expect a lot of experiments named using parts of the component models until a clear winner emerges in the benchmarks
In this case .
𧩠Configuration
slices:
- sources:
- model: udkai/Turdus
layer_range: [0, 32]
- model: flemmingmiguel/DareBeagle-7B
layer_range: [0, 32]
merge_method: slerp
base_model: flemmingmiguel/DareBeagle-7B
parameters:
t:
- filter: self_attn
value: [0, 0.5, 0.3, 0.7, 1]
- filter: mlp
value: [1, 0.5, 0.7, 0.3, 0]
- value: 0.45 # fallback for rest of tensors
dtype: float16
π» Usage
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "flemmingmiguel/TurdusDareBeagle-7B"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
- Downloads last month
- 13
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.