GuillemGSubies's picture
Add citation to README.md
32678d2 verified
metadata
language: es
tags:
  - biomedical
  - clinical
  - spanish
  - BETO_Galen
license: mit
datasets:
  - ehealth_kd
metrics:
  - f1
model-index:
  - name: IIC/BETO_Galen-ehealth_kd
    results:
      - task:
          type: token-classification
        dataset:
          name: eHealth-KD
          type: ehealth_kd
          split: test
        metrics:
          - name: f1
            type: f1
            value: 0.658
pipeline_tag: token-classification

BETO_Galen-ehealth_kd

This model is a finetuned version of BETO_Galen for the eHealth-KD dataset used in a benchmark in the paper A comparative analysis of Spanish Clinical encoder-based models on NER and classification tasks. The model has a F1 of 0.658

Please refer to the original publication for more information.

Parameters used

parameter Value
batch size 32
learning rate 4e-05
classifier dropout 0
warmup ratio 0
warmup steps 0
weight decay 0
optimizer AdamW
epochs 10
early stopping patience 3

BibTeX entry and citation info

@article{10.1093/jamia/ocae054,
    author = {García Subies, Guillem and Barbero Jiménez, Álvaro and Martínez Fernández, Paloma},
    title = {A comparative analysis of Spanish Clinical encoder-based models on NER and classification tasks},
    journal = {Journal of the American Medical Informatics Association},
    volume = {31},
    number = {9},
    pages = {2137-2146},
    year = {2024},
    month = {03},
    issn = {1527-974X},
    doi = {10.1093/jamia/ocae054},
    url = {https://doi.org/10.1093/jamia/ocae054},
}