YAML Metadata
Warning:
empty or missing yaml metadata in repo card
(https://huggingface.co/docs/hub/model-cards#model-card-metadata)
A Universal Dependency parser built on top of a Transformer language model
Score on pre-tokenized test data:
Metric | Precision | Recall | F1 Score | AligndAcc
-----------+-----------+-----------+-----------+-----------
Tokens | 99.70 | 99.77 | 99.73 |
Sentences | 100.00 | 100.00 | 100.00 |
Words | 99.62 | 99.61 | 99.61 |
UPOS | 96.99 | 96.97 | 96.98 | 97.36
XPOS | 93.65 | 93.64 | 93.65 | 94.01
UFeats | 91.31 | 91.29 | 91.30 | 91.65
AllTags | 86.86 | 86.85 | 86.86 | 87.19
Lemmas | 95.83 | 95.81 | 95.82 | 96.19
UAS | 89.01 | 89.00 | 89.00 | 89.35
LAS | 85.72 | 85.70 | 85.71 | 86.04
CLAS | 81.39 | 80.91 | 81.15 | 81.34
MLAS | 69.21 | 68.81 | 69.01 | 69.17
BLEX | 77.44 | 76.99 | 77.22 | 77.40
Score on untokenized test data:
Metric | Precision | Recall | F1 Score | AligndAcc
-----------+-----------+-----------+-----------+-----------
Tokens | 99.50 | 99.66 | 99.58 |
Sentences | 100.00 | 100.00 | 100.00 |
Words | 99.42 | 99.50 | 99.46 |
UPOS | 96.80 | 96.88 | 96.84 | 97.37
XPOS | 93.48 | 93.56 | 93.52 | 94.03
UFeats | 91.13 | 91.20 | 91.16 | 91.66
AllTags | 86.71 | 86.78 | 86.75 | 87.22
Lemmas | 95.66 | 95.74 | 95.70 | 96.22
UAS | 88.76 | 88.83 | 88.80 | 89.28
LAS | 85.49 | 85.55 | 85.52 | 85.99
CLAS | 81.19 | 80.73 | 80.96 | 81.31
MLAS | 69.06 | 68.67 | 68.87 | 69.16
BLEX | 77.28 | 76.84 | 77.06 | 77.39
To use the model, you need to setup COMBO, which makes it possible to use word embeddings from a pre-trained transformer model (electra-base-igc-is).
git submodule update --init --recursive
pip install -U pip setuptools wheel
pip install --index-url https://pypi.clarin-pl.eu/simple combo==1.0.5
- For Python 3.9, you might need to install cython:
pip install -U pip cython
- Then you can run the model as it is done in parse_file.py
For more instructions, see here: https://gitlab.clarin-pl.eu/syntactic-tools/combo
The Tokenizer directory is a clone of Miðeind's tokenizer.
The directory transformer_models/
contains the pretrained model electra-base-igc-is,
which supplies the parser with contextual embeddings and attention, trained by Jón Friðrik Daðason.