Imkaran's picture
Saving model gmra_google-bert/bert-base-uncased_08112024T144127
860bfab verified
metadata
library_name: transformers
license: apache-2.0
base_model: google-bert/bert-base-uncased
tags:
  - generated_from_trainer
metrics:
  - f1
model-index:
  - name: bert-base-uncased_08112024T144127
    results: []

bert-base-uncased_08112024T144127

This model is a fine-tuned version of google-bert/bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4242
  • F1: 0.8849
  • Learning Rate: 0.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 600
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss F1 Rate
No log 0.9942 86 1.7911 0.1661 0.0000
No log 2.0 173 1.6895 0.2558 0.0000
No log 2.9942 259 1.5467 0.4336 0.0000
No log 4.0 346 1.3716 0.5012 0.0000
No log 4.9942 432 1.1818 0.5459 0.0000
1.5117 6.0 519 1.0336 0.5938 0.0000
1.5117 6.9942 605 0.9389 0.6309 1e-05
1.5117 8.0 692 0.8480 0.6802 0.0000
1.5117 8.9942 778 0.7481 0.7288 0.0000
1.5117 10.0 865 0.6824 0.7561 0.0000
1.5117 10.9942 951 0.6213 0.7867 0.0000
0.7682 12.0 1038 0.5781 0.8039 0.0000
0.7682 12.9942 1124 0.5184 0.8345 0.0000
0.7682 14.0 1211 0.4854 0.8489 0.0000
0.7682 14.9942 1297 0.4815 0.8559 0.0000
0.7682 16.0 1384 0.4422 0.8704 0.0000
0.7682 16.9942 1470 0.4422 0.8761 6e-06
0.305 18.0 1557 0.4368 0.8791 0.0000
0.305 18.9942 1643 0.4242 0.8849 0.0000
0.305 20.0 1730 0.4483 0.8829 0.0000
0.305 20.9942 1816 0.4539 0.8841 0.0000
0.305 22.0 1903 0.4521 0.8862 0.0000
0.305 22.9942 1989 0.4450 0.8896 0.0000
0.1014 24.0 2076 0.4603 0.8874 0.0000
0.1014 24.9942 2162 0.4750 0.8864 0.0000
0.1014 26.0 2249 0.4711 0.8887 7e-07
0.1014 26.9942 2335 0.4756 0.8879 4e-07
0.1014 28.0 2422 0.4691 0.8883 2e-07
0.0521 28.9942 2508 0.4694 0.8883 0.0
0.0521 29.8266 2580 0.4699 0.8883 0.0

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.5.1+cu124
  • Datasets 3.1.0
  • Tokenizers 0.19.1