Imkaran's picture
Saving model gmra_cardiffnlp/twitter-roberta-base-sentiment-latest_12112024T123630
5e3f33a verified
|
raw
history blame
3.76 kB
metadata
library_name: transformers
base_model: cardiffnlp/twitter-roberta-base-sentiment-latest
tags:
  - generated_from_trainer
metrics:
  - f1
model-index:
  - name: twitter-roberta-base-sentiment-latest_12112024T123630
    results: []

twitter-roberta-base-sentiment-latest_12112024T123630

This model is a fine-tuned version of cardiffnlp/twitter-roberta-base-sentiment-latest on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5160
  • F1: 0.8689
  • Learning Rate: 0.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 600
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss F1 Rate
No log 0.9942 43 1.7742 0.1656 7e-07
No log 1.9884 86 1.7368 0.2208 0.0000
No log 2.9827 129 1.6531 0.3182 0.0000
No log 4.0 173 1.5111 0.4169 0.0000
No log 4.9942 216 1.3427 0.4913 0.0000
No log 5.9884 259 1.1750 0.5379 0.0000
No log 6.9827 302 1.0970 0.5486 5e-06
No log 8.0 346 1.0081 0.5856 0.0000
No log 8.9942 389 0.9728 0.5991 0.0000
No log 9.9884 432 0.9005 0.6481 0.0000
No log 10.9827 475 0.8614 0.6640 0.0000
1.2671 12.0 519 0.7905 0.7202 0.0000
1.2671 12.9942 562 0.7560 0.7367 0.0000
1.2671 13.9884 605 0.7399 0.7421 1e-05
1.2671 14.9827 648 0.6596 0.7804 0.0000
1.2671 16.0 692 0.6331 0.7966 0.0000
1.2671 16.9942 735 0.6272 0.7994 0.0000
1.2671 17.9884 778 0.5878 0.8249 0.0000
1.2671 18.9827 821 0.5564 0.8386 0.0000
1.2671 20.0 865 0.5482 0.8474 0.0000
1.2671 20.9942 908 0.5523 0.8501 0.0000
1.2671 21.9884 951 0.5309 0.8534 0.0000
1.2671 22.9827 994 0.5364 0.8582 4e-06
0.4473 24.0 1038 0.5176 0.8638 3e-06
0.4473 24.9942 1081 0.5256 0.8663 0.0000
0.4473 25.9884 1124 0.5182 0.8691 0.0000
0.4473 26.9827 1167 0.5237 0.8680 8e-07
0.4473 28.0 1211 0.5160 0.8689 3e-07
0.4473 28.9942 1254 0.5216 0.8673 1e-07
0.4473 29.8266 1290 0.5220 0.8670 0.0

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.5.1+cu124
  • Datasets 3.1.0
  • Tokenizers 0.19.1