File size: 3,039 Bytes
4f6d94e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
import os
import cv2
from insightface.app import FaceAnalysis
import torch



# prompt: compare face embediggs




class FaceRec:
    def __init__(self):
        self.foldername = '/home/emmanuel/Pictures/Webcam'
        self.files = []
        self.embeds = []
        self.diff = []
        self.ground_mathches = []
        self.sampling = None
        
            

    def folder(self, attempt=True, folder='/home/emmanuel/Pictures/Webcam'):
        if attempt:
            for file in os.listdir(folder):
                self.files.append(file)

            self.image_pair = list(zip(self.files[0:len(self.files)//2], self.files[len(self.files)//2:]))
            print(self.image_pair)


        else:
            self.foldername = '/home/emmanuel/Pictures/webcam'
            self.files = []
            self.folder(attempt=True, folder=self.foldername)
            

        
    
    def embeddings(self, image):
        app = FaceAnalysis(name="buffalo_l", providers=['CUDAExecutionProvider', 'CPUExecutionProvider'])
        app.prepare(ctx_id=0, det_size=(640, 640))
        image1 = cv2.imread(image)
        faces = app.get(image1)

        faceid_embeds = torch.from_numpy(faces[0].normed_embedding).unsqueeze(0)
        return(torch.Tensor(faceid_embeds))



    def face_embed(self, face, face1):
        # Load the two images and get their face embeddings.
        face_encodings = self.embeddings(face)
        face_encodings1 = self.embeddings(face1)
        return(torch.nn.functional.cosine_similarity(face_encodings, face_encodings1))
    


    def closeness(self):
        self.embeds = []
        for faces in self.image_pair:
            self.embeds.append(self.face_embed(self.foldername+'/'+faces[0], self.foldername+'/'+faces[1]))

        return(0)
    

    def compare(self, attempt=True):
        self.diff = []
        for diffs in list(zip(self.embeds[0:len(self.embeds)//2], self.embeds[len(self.embeds)//2:])):
            self.diff.append(torch.nn.functional.pairwise_distance(diffs[0], diffs[1]))



    
    def expectation(self):
        mean, std = torch.mean(torch.Tensor(self.diff[0:])), torch.std(torch.Tensor(self.diff[0:]))
        distribute = torch.distributions.Normal(mean, std)
        self.sampling = distribute.sample(sample_shape=(10,))



    def model(self):       
        self.closeness()
        return(self.compare())



    def verify(self):
        self.folder()
        self.model()
        self.expectation()
        self.folder(attempt=False)
        self.model()

        fails = 0
        success = 0
        max_itter = 10
        while max_itter >= 0:
            for samples in self.sampling:
                if self.diff[0] <= samples:
                    success = success+1
                
                else:
                    fails = fails+1
                
            max_itter = max_itter-1


        if fails > success:
            return(False)

        else:
            return(True)


    



Recognition = FaceRec()
print(Recognition.verify())