faceauth / README.md
InferencetrainingAI's picture
Update README.md
b222cbf verified
|
raw
history blame
3.86 kB
---
license: bigscience-openrail-m
---
Face verification
import os
import cv2
from insightface.app import FaceAnalysis
import torch
# prompt: compare face embediggs
```
import os
import cv2
from insightface.app import FaceAnalysis
import torch
import torch.nn.functional as F
# prompt: compare face embediggs
class FaceRec:
def __init__(self):
self.foldername = '/home/emmanuel-nsanga/Pictures/Webcam'
self.files = []
self.files_attempt = []
self.embeds = []
self.diff = []
self.ground_mathches = []
self.sample_true = []
self.sample_attemt = []
self.folder_attempt='/home/emmanuel-nsanga/Pictures/Webcam/'
self.folder_ground = '/home/emmanuel-nsanga/Pictures/webcam/'
self.folder_camera = '/home/emmanuel-nsanga/Pictures/camera/'
self.files_ground = [self.folder_ground+files for files in os.listdir(self.folder_ground)]
self.files_attempt = [self.folder_attempt+files for files in os.listdir(self.folder_attempt)]
self.files_camera = [self.folder_camera+files for files in os.listdir(self.folder_camera)]
self.zip_ground = list(zip(self.files_ground, self.files_attempt))
self.zip_attempt = list(zip(self.files_attempt, self.files_camera))
def embeddings(self, image):
app = FaceAnalysis(name="buffalo_l", providers=['CUDAExecutionProvider', 'CPUExecutionProvider'])
app.prepare(ctx_id=0, det_size=(640, 640))
image1 = cv2.imread(image)
faces = app.get(image1)
faceid_embeds = torch.from_numpy(faces[0].normed_embedding).unsqueeze(0)
return(torch.Tensor(faceid_embeds))
def face_embed(self, face, face1):
# Load the two images and get their face embeddings.
face_encodings = self.embeddings(face)
face_encodings1 = self.embeddings(face1)
return(torch.nn.functional.cosine_similarity(face_encodings, face_encodings1))
def expectation(self, sample_data):
mean, std = torch.mean(sample_data), torch.std(sample_data)
distribute = torch.distributions.Normal(mean, std)
return(distribute.sample(sample_shape=(10,)))
def sim_distribution(self):
attempt_embeddings = self.zip_ground[0::]
ground_embeddings = self.zip_attempt[len(self.zip_ground)::]
w_r_t_g = self.zip_ground[0::]
w_r_t_c = self.zip_attempt
w_r_t_g = self.zip_ground[0::len(self.zip_ground)//2]
w_r_t_tr = self.zip_ground[len(self.zip_ground)//2::]
ground_embeddings = [self.face_embed(attempting, attempt) for attempting, attempt in w_r_t_g]
attempt_ground = [self.face_embed(attempting, attempt) for attempting, attempt in w_r_t_tr]
ground_embeddings_g = [self.face_embed(attempting, attempt) for attempting, attempt in w_r_t_g]
attempt_ground_c = [self.face_embed(attempting, attempt) for attempting, attempt in w_r_t_c]
self.sampling_ground = self.expectation(torch.Tensor(ground_embeddings))
self.sampling_attempt_g = self.expectation(torch.Tensor(attempt_ground))
self.sampling_ground = self.expectation(torch.Tensor(ground_embeddings_g))
self.sampling_attempt_c = self.expectation(torch.Tensor(attempt_ground_c))
return(self.sampling_ground, self.sampling_attempt_g, self.sampling_ground, self.sampling_attempt_c)
def model(self):
sim_distribution = self.sim_distribution()
xy = torch.mean(torch.Tensor([x-y for x, y in zip(sim_distribution[2], sim_distribution[3])]))
print(xy.item())
if xy.item() < 0.5:
print(True)
else:
print(False)
Recognition = FaceRec()
print(Recognition.model())
```