vatsaldin's picture
finetuned model with conll2003 data
4fde8f4 verified
|
raw
history blame
2.33 kB
metadata
license: mit
base_model: xlm-roberta-base
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: xlm-roberta-base-finetuned-Conll2003-ner-2024_08_05
    results: []

xlm-roberta-base-finetuned-Conll2003-ner-2024_08_05

This model is a fine-tuned version of xlm-roberta-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1404
  • Precision: 0.9004
  • Recall: 0.9163
  • F1: 0.9083
  • Accuracy: 0.9780

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.0838 0.3326 292 0.1220 0.8779 0.8841 0.8810 0.9730
0.0807 0.6651 584 0.1345 0.8695 0.8934 0.8813 0.9728
0.0711 0.9977 876 0.1336 0.8728 0.8986 0.8855 0.9733
0.0467 1.3303 1168 0.1443 0.8817 0.9090 0.8951 0.9748
0.0452 1.6629 1460 0.1311 0.8887 0.9138 0.9011 0.9759
0.0383 1.9954 1752 0.1324 0.9021 0.9146 0.9083 0.9776
0.026 2.3280 2044 0.1352 0.9024 0.9180 0.9101 0.9784
0.0245 2.6606 2336 0.1431 0.9010 0.9172 0.9090 0.9778
0.0235 2.9932 2628 0.1403 0.9004 0.9163 0.9083 0.9780

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1