|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from transformers.configuration_utils import PretrainedConfig |
|
from transformers.utils import logging |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
class ProGenConfig(PretrainedConfig): |
|
model_type = "progen" |
|
|
|
def __init__( |
|
self, |
|
vocab_size=50400, |
|
n_positions=2048, |
|
n_ctx=2048, |
|
n_embd=4096, |
|
n_layer=28, |
|
n_head=16, |
|
rotary_dim=64, |
|
n_inner=None, |
|
activation_function="gelu_new", |
|
resid_pdrop=0.0, |
|
embd_pdrop=0.0, |
|
attn_pdrop=0.0, |
|
layer_norm_epsilon=1e-5, |
|
initializer_range=0.02, |
|
scale_attn_weights=True, |
|
gradient_checkpointing=False, |
|
use_cache=True, |
|
bos_token_id=50256, |
|
eos_token_id=50256, |
|
tie_word_embeddings=False, |
|
**kwargs |
|
): |
|
super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, tie_word_embeddings=tie_word_embeddings, **kwargs) |
|
|
|
self.vocab_size = vocab_size |
|
self.n_ctx = n_ctx |
|
self.n_positions = n_positions |
|
self.n_embd = n_embd |
|
self.n_layer = n_layer |
|
self.n_head = n_head |
|
self.n_inner = n_inner |
|
self.rotary_dim = rotary_dim |
|
self.activation_function = activation_function |
|
self.resid_pdrop = resid_pdrop |
|
self.embd_pdrop = embd_pdrop |
|
self.attn_pdrop = attn_pdrop |
|
self.layer_norm_epsilon = layer_norm_epsilon |
|
self.initializer_range = initializer_range |
|
self.gradient_checkpointing = gradient_checkpointing |
|
self.scale_attn_weights = scale_attn_weights |
|
self.use_cache = use_cache |
|
|
|
self.bos_token_id = bos_token_id |
|
self.eos_token_id = eos_token_id |
|
self.tie_word_embeddings = tie_word_embeddings |
|
|
|
@property |
|
def max_position_embeddings(self): |
|
return self.n_positions |
|
|
|
@property |
|
def hidden_size(self): |
|
return self.n_embd |
|
|
|
@property |
|
def num_attention_heads(self): |
|
return self.n_head |
|
|
|
@property |
|
def num_hidden_layers(self): |
|
return self.n_layer |
|
|