File size: 2,751 Bytes
2b31877
 
12aab53
2b31877
12aab53
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2b31877
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
---
license: cc
language:
- zh
pipeline_tag: text-to-speech
---

# Model Card for [Your VITS Model Name]

## Model Details
- **Model Name**: [Your VITS Model Name]
- **Model Type**: TTS (Text-to-Speech)
- **Architecture**: VITS (Variational Inference Text-to-Speech)
- **Author**: [Your Name or Organization]
- **Repository**: [Link to your Huggingface repository]
- **Paper**: [Link to the original VITS paper, if applicable]

## Model Description
VITS (Variational Inference Text-to-Speech) 是一種新穎的 TTS 模型架構,能夠生成高質量且自然的語音。本模型基於 VITS 架構,旨在提供高效的語音合成功能,適用於多種應用場景。

## Usage
### Inference
要使用此模型進行語音合成,您可以使用以下代碼示例:

```python
from transformers import Wav2Vec2Processor, VITSModel

processor = Wav2Vec2Processor.from_pretrained("[Your Huggingface Model Repository]")
model = VITSModel.from_pretrained("[Your Huggingface Model Repository]")

inputs = processor("要合成的文本", return_tensors="pt")

with torch.no_grad():
    speech = model.generate_speech(inputs.input_values)

# Save or play the generated speech
with open("output.wav", "wb") as f:
    f.write(speech)
```

### Training
如果您需要訓練此模型,請參考以下的代碼示例:

```python
from transformers import VITSConfig, VITSForSpeechSynthesis, Trainer, TrainingArguments

config = VITSConfig()
model = VITSForSpeechSynthesis(config)

training_args = TrainingArguments(
    output_dir="./results",
    evaluation_strategy="epoch",
    per_device_train_batch_size=8,
    per_device_eval_batch_size=8,
    num_train_epochs=3,
    save_steps=10_000,
    save_total_limit=2,
)

trainer = Trainer(
    model=model,
    args=training_args,
    train_dataset=your_train_dataset,
    eval_dataset=your_eval_dataset,
)

trainer.train()
```

## Model Performance
- **Training Dataset**: 描述用於訓練模型的數據集。
- **Evaluation Metrics**: 描述模型性能評估所使用的指標,如 MOS (Mean Opinion Score) 或 PESQ (Perceptual Evaluation of Speech Quality)。
- **Results**: 提供模型在測試數據集上的性能數據。

## Limitations and Bias
- **Known Limitations**: 描述模型的已知限制,如對某些語言或口音的支持較差。
- **Potential Bias**: 描述模型可能存在的偏見和倫理問題。

## Citation
如果您在研究中使用了此模型,請引用以下文獻:

```
@inproceedings{vits2021,
  title={Variational Inference Text-to-Speech},
  author={Your Name and Co-Authors},
  booktitle={Conference on Your Conference Name},
  year={2021}
}
```

## Acknowledgements
感謝 [Your Team or Collaborators] 對此模型開發的支持和貢獻。

---