|
--- |
|
license: cc |
|
language: |
|
- zh |
|
pipeline_tag: text-to-speech |
|
--- |
|
|
|
# Model Card for [Your VITS Model Name] |
|
|
|
## Model Details |
|
- **Model Name**: [Your VITS Model Name] |
|
- **Model Type**: TTS (Text-to-Speech) |
|
- **Architecture**: VITS (Variational Inference Text-to-Speech) |
|
- **Author**: [Your Name or Organization] |
|
- **Repository**: [Link to your Huggingface repository] |
|
- **Paper**: [Link to the original VITS paper, if applicable] |
|
|
|
## Model Description |
|
VITS (Variational Inference Text-to-Speech) 是一種新穎的 TTS 模型架構,能夠生成高質量且自然的語音。本模型基於 VITS 架構,旨在提供高效的語音合成功能,適用於多種應用場景。 |
|
|
|
## Usage |
|
### Inference |
|
要使用此模型進行語音合成,您可以使用以下代碼示例: |
|
|
|
```python |
|
from transformers import Wav2Vec2Processor, VITSModel |
|
|
|
processor = Wav2Vec2Processor.from_pretrained("[Your Huggingface Model Repository]") |
|
model = VITSModel.from_pretrained("[Your Huggingface Model Repository]") |
|
|
|
inputs = processor("要合成的文本", return_tensors="pt") |
|
|
|
with torch.no_grad(): |
|
speech = model.generate_speech(inputs.input_values) |
|
|
|
# Save or play the generated speech |
|
with open("output.wav", "wb") as f: |
|
f.write(speech) |
|
``` |
|
|
|
### Training |
|
如果您需要訓練此模型,請參考以下的代碼示例: |
|
|
|
```python |
|
from transformers import VITSConfig, VITSForSpeechSynthesis, Trainer, TrainingArguments |
|
|
|
config = VITSConfig() |
|
model = VITSForSpeechSynthesis(config) |
|
|
|
training_args = TrainingArguments( |
|
output_dir="./results", |
|
evaluation_strategy="epoch", |
|
per_device_train_batch_size=8, |
|
per_device_eval_batch_size=8, |
|
num_train_epochs=3, |
|
save_steps=10_000, |
|
save_total_limit=2, |
|
) |
|
|
|
trainer = Trainer( |
|
model=model, |
|
args=training_args, |
|
train_dataset=your_train_dataset, |
|
eval_dataset=your_eval_dataset, |
|
) |
|
|
|
trainer.train() |
|
``` |
|
|
|
## Model Performance |
|
- **Training Dataset**: 描述用於訓練模型的數據集。 |
|
- **Evaluation Metrics**: 描述模型性能評估所使用的指標,如 MOS (Mean Opinion Score) 或 PESQ (Perceptual Evaluation of Speech Quality)。 |
|
- **Results**: 提供模型在測試數據集上的性能數據。 |
|
|
|
## Limitations and Bias |
|
- **Known Limitations**: 描述模型的已知限制,如對某些語言或口音的支持較差。 |
|
- **Potential Bias**: 描述模型可能存在的偏見和倫理問題。 |
|
|
|
## Citation |
|
如果您在研究中使用了此模型,請引用以下文獻: |
|
|
|
``` |
|
@inproceedings{vits2021, |
|
title={Variational Inference Text-to-Speech}, |
|
author={Your Name and Co-Authors}, |
|
booktitle={Conference on Your Conference Name}, |
|
year={2021} |
|
} |
|
``` |
|
|
|
## Acknowledgements |
|
感謝 [Your Team or Collaborators] 對此模型開發的支持和貢獻。 |
|
|
|
--- |