BERT-TextClassification
This model is a fine-tuned version of bert-base-cased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.3769
- Accuracy: 0.841
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 25
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 1.0 | 125 | 0.6928 | 0.518 |
No log | 2.0 | 250 | 0.6834 | 0.573 |
No log | 3.0 | 375 | 0.6808 | 0.534 |
0.6958 | 4.0 | 500 | 0.6763 | 0.533 |
0.6958 | 5.0 | 625 | 0.6564 | 0.639 |
0.6958 | 6.0 | 750 | 0.6368 | 0.672 |
0.6958 | 7.0 | 875 | 0.6091 | 0.699 |
0.6446 | 8.0 | 1000 | 0.5769 | 0.713 |
0.6446 | 9.0 | 1125 | 0.5434 | 0.73 |
0.6446 | 10.0 | 1250 | 0.5142 | 0.748 |
0.6446 | 11.0 | 1375 | 0.4820 | 0.757 |
0.5224 | 12.0 | 1500 | 0.4638 | 0.785 |
0.5224 | 13.0 | 1625 | 0.4383 | 0.792 |
0.5224 | 14.0 | 1750 | 0.4222 | 0.804 |
0.5224 | 15.0 | 1875 | 0.4121 | 0.816 |
0.4233 | 16.0 | 2000 | 0.3995 | 0.826 |
0.4233 | 17.0 | 2125 | 0.3958 | 0.822 |
0.4233 | 18.0 | 2250 | 0.3886 | 0.833 |
0.4233 | 19.0 | 2375 | 0.3843 | 0.832 |
0.3784 | 20.0 | 2500 | 0.3820 | 0.835 |
0.3784 | 21.0 | 2625 | 0.3804 | 0.834 |
0.3784 | 22.0 | 2750 | 0.3784 | 0.836 |
0.3784 | 23.0 | 2875 | 0.3773 | 0.84 |
0.3621 | 24.0 | 3000 | 0.3771 | 0.841 |
0.3621 | 25.0 | 3125 | 0.3769 | 0.841 |
Framework versions
- PEFT 0.10.0
- Transformers 4.38.2
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2
- Downloads last month
- 3
Model tree for Jahanzeb1/BERT-TextClassification
Base model
google-bert/bert-base-cased