File size: 1,338 Bytes
1b42acb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
---
datasets:
- JairamKanna/Tamil-vulnerable-speech
language:
- ta
metrics:
- wer
library_name: transformers
pipeline_tag: automatic-speech-recognition
---
# Model Card for Model ID

<!-- Provide a quick summary of what the model is/does. -->

This model is the fine-tuned version of Whisper-large-v2 model for Speech Recognition task for vulnerable individuals in Tamil.


#### Preprocessing [optional]




#### Training Hyperparameters

** training_args = Seq2SeqTrainingArguments(
    output_dir="./pretrainedwhisper-medium-native-v2",  # change to a repo name of your choice
    per_device_train_batch_size=4,
    gradient_accumulation_steps=1,  # increase by 2x for every 2x decrease in batch size
    learning_rate=1e-5,
    warmup_steps=200,
    max_steps=2000,
    gradient_checkpointing=True,
    fp16=True,
    evaluation_strategy="steps",
    per_device_eval_batch_size=8,
    predict_with_generate=True,
    generation_max_length=225,
    save_steps=500,
    eval_steps=500,
    logging_steps=25,
    report_to=["tensorboard"],
    load_best_model_at_end=True,
    metric_for_best_model="wer",
    greater_is_better=False,
    push_to_hub=True,
    optim="adamw_bnb_8bit"
)


#### Metrics

<!-- These are the evaluation metrics being used, ideally with a description of why. -->
WER is the evaluation metrics used here.