Jayveersinh-Raj's picture
Update README.md
fcf65fa verified
|
raw
history blame
1.08 kB
---
language:
- hi
metrics:
- bleu
- rouge
---
# Model discription
Hindi Summarization model. It summarizes a hindi paragraph.
# Base model
- mt5-small
# How to use
from transformers import AutoTokenizer
from transformers import AutoModelForSeq2SeqLM, Seq2SeqTrainingArguments, Seq2SeqTrainer
checkpoint = "Jayveersinh-Raj/hindi-summarizer-small"
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint)
# Input paragraph for summarization
input_sentence = "<sum> your hindi paragraph"
# Tokenize the input sentence
input_ids = tokenizer.encode(input_sentence, return_tensors="pt").to("cuda")
# Generate predictions
with torch.no_grad():
output_ids = model.generate(input_ids, max_new_tokens=200)
# Decode the generated output
output_sentence = tokenizer.decode(output_ids[0], skip_special_tokens=True)
# Print the generated output
print("Input:", input_sentence)
print("Summarized:", output_sentence)
# Evaluation
- Rogue1: 0.38
- BLUE: 0.35