test_bert / README.md
JorgeRGomez's picture
Model save
c8ec5fb verified
metadata
license: mit
base_model: nlptown/bert-base-multilingual-uncased-sentiment
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: test_bert
    results: []

test_bert

This model is a fine-tuned version of nlptown/bert-base-multilingual-uncased-sentiment on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8332
  • Accuracy: 0.6817

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 2

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.1121 0.13 500 0.9841 0.6302
1.0067 0.25 1000 0.9490 0.6499
0.9325 0.38 1500 0.9200 0.6577
0.9301 0.51 2000 0.9684 0.6418
0.927 0.63 2500 0.9837 0.6234
0.9067 0.76 3000 0.8973 0.6572
0.8986 0.88 3500 0.8663 0.6747
0.8964 1.01 4000 0.8408 0.6767
0.8115 1.14 4500 0.8478 0.6696
0.8081 1.26 5000 0.8600 0.6681
0.7896 1.39 5500 0.8569 0.6747
0.8075 1.52 6000 0.8353 0.6767
0.802 1.64 6500 0.8261 0.6767
0.768 1.77 7000 0.8289 0.6782
0.7505 1.9 7500 0.8332 0.6817

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2