๐ŸŒŠ ์ œ์ฃผ์–ด, ํ‘œ์ค€์–ด ์–‘๋ฐฉํ–ฅ ๋ฒˆ์—ญ ๋ชจ๋ธ (Jeju-Standard Bidirectional Translation Model)

1. Introduction

๐Ÿง‘โ€๐Ÿคโ€๐Ÿง‘Member

  • Bitamin 12๊ธฐ : ๊ตฌ์ค€ํšŒ, ์ด์„œํ˜„, ์ด์˜ˆ๋ฆฐ
  • Bitamin 13๊ธฐ : ๊น€์œค์˜, ๊น€์žฌ๊ฒธ, ์ดํ˜•์„

Github Link

How to use this Model

  • You can use this model with transformers to perform inference.
  • Below is an example of how to load the model and generate translations:
import torch
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM

## Set up the device (GPU or CPU)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

## Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("Junhoee/Kobart-Jeju-translation")
model = AutoModelForSeq2SeqLM.from_pretrained("Junhoee/Kobart-Jeju-translation").to(device)

## Set up the input text
## ๋ฌธ์žฅ ์ž…๋ ฅ ์ „์— ๋ฐฉํ–ฅ์— ๋งž๊ฒŒ [์ œ์ฃผ] or [ํ‘œ์ค€] ํ† ํฐ์„ ์ž…๋ ฅ ํ›„ ๋ฌธ์žฅ ์ž…๋ ฅ
input_text = "[ํ‘œ์ค€] ์•ˆ๋…•ํ•˜์„ธ์š”"

## Tokenize the input text
input_ids = tokenizer(input_text, return_tensors="pt", padding=True, truncation=True).input_ids.to(device)

## Generate the translation
outputs = model.generate(input_ids, max_length=64)

## Decode and print the output
decoded_output = tokenizer.decode(outputs[0], skip_special_tokens=True)
print("Model Output:", decoded_output)
Model Output: ์•ˆ๋…•ํ•˜์ˆ˜๊ฝˆ

## Set up the input text
## ๋ฌธ์žฅ ์ž…๋ ฅ ์ „์— ๋ฐฉํ–ฅ์— ๋งž๊ฒŒ [์ œ์ฃผ] or [ํ‘œ์ค€] ํ† ํฐ์„ ์ž…๋ ฅ ํ›„ ๋ฌธ์žฅ ์ž…๋ ฅ
input_text = "[์ œ์ฃผ] ์•ˆ๋…•ํ•˜์ˆ˜๊ฝˆ"

## Tokenize the input text
input_ids = tokenizer(input_text, return_tensors="pt", padding=True, truncation=True).input_ids.to(device)

## Generate the translation
outputs = model.generate(input_ids, max_length=64)

## Decode and print the output
decoded_output = tokenizer.decode(outputs[0], skip_special_tokens=True)
print("Model Output:", decoded_output)
Model Output: ์•ˆ๋…•ํ•˜์„ธ์š”

Parent Model

2. Dataset - ์•ฝ 93๋งŒ ๊ฐœ์˜ ํ–‰

  • AI-Hub (์ œ์ฃผ์–ด ๋ฐœํ™” ๋ฐ์ดํ„ฐ + ์ค‘๋…„์ธต ๋ฐฉ์–ธ ๋ฐœํ™” ๋ฐ์ดํ„ฐ)
  • Github (์นด์นด์˜ค๋ธŒ๋ ˆ์ธ JIT ๋ฐ์ดํ„ฐ)
  • ๊ทธ ์™ธ
    • ์ œ์ฃผ์–ด์‚ฌ์ „ ๋ฐ์ดํ„ฐ (์ œ์ฃผ๋„์ฒญ ํ™ˆํŽ˜์ด์ง€์—์„œ ํฌ๋กค๋ง)
    • ๊ฐ€์‚ฌ ๋ฒˆ์—ญ ๋ฐ์ดํ„ฐ (๋ญ๋žญํ•˜๋งจ ์œ ํŠœ๋ธŒ์—์„œ ์ผ์ผ์ด ์ˆ˜์ง‘)
    • ๋„์„œ ๋ฐ์ดํ„ฐ (์ œ์ฃผ๋ฐฉ์–ธ ๊ทธ ๋ง›๊ณผ ๋ฉ‹, ๋ถ€์—๋‚˜๋„ ์ง€๊บผ์ ธ๋„ ๋„์„œ์—์„œ ์ผ์ผ์ด ์ˆ˜์ง‘)
    • 2018๋…„๋„ ์ œ์ฃผ์–ด ๊ตฌ์ˆ  ์ž๋ฃŒ์ง‘ (์ผ์ผ์ด ์ˆ˜์ง‘ - ํ‰๊ฐ€์šฉ ๋ฐ์ดํ„ฐ๋กœ ์‚ฌ์šฉ)

3. Hyper Parameters

  • Epoch : 3 epochs
  • Learning Rate : 2e-5
  • Weight Decay=0.01
  • Batch Size : 32

4. Bleu Score

  • 2018 ์ œ์ฃผ์–ด ๊ตฌ์ˆ  ์ž๋ฃŒ์ง‘ ๋ฐ์ดํ„ฐ ๊ธฐ์ค€

    • ์ œ์ฃผ์–ด -> ํ‘œ์ค€์–ด : 0.76
    • ํ‘œ์ค€์–ด -> ์ œ์ฃผ์–ด : 0.5
  • AI-Hub ์ œ์ฃผ์–ด ๋ฐœํ™” ๋ฐ์ดํ„ฐ์˜ validation data ๊ธฐ์ค€

    • ์ œ์ฃผ์–ด -> ํ‘œ์ค€์–ด : 0.89
    • ํ‘œ์ค€์–ด -> ์ œ์ฃผ์–ด : 0.77

5. CREDIT

Downloads last month
36
Safetensors
Model size
124M params
Tensor type
F32
ยท
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.