metadata
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: uwb_atcc
results: []
uwb_atcc
This model is a fine-tuned version of bert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.0098
- Precision: 0.9760
- Recall: 0.9741
- F1: 0.9750
- Accuracy: 0.9965
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 64
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- training_steps: 10000
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
No log | 0.03 | 500 | 0.2282 | 0.6818 | 0.7001 | 0.6908 | 0.9246 |
0.3487 | 0.06 | 1000 | 0.1214 | 0.8163 | 0.8024 | 0.8093 | 0.9631 |
0.3487 | 0.1 | 1500 | 0.0933 | 0.8496 | 0.8544 | 0.8520 | 0.9722 |
0.1124 | 0.13 | 2000 | 0.0693 | 0.8845 | 0.8739 | 0.8791 | 0.9786 |
0.1124 | 0.16 | 2500 | 0.0540 | 0.8993 | 0.8911 | 0.8952 | 0.9817 |
0.0667 | 0.19 | 3000 | 0.0474 | 0.9058 | 0.8929 | 0.8993 | 0.9857 |
0.0667 | 0.23 | 3500 | 0.0418 | 0.9221 | 0.9245 | 0.9233 | 0.9865 |
0.0492 | 0.26 | 4000 | 0.0294 | 0.9369 | 0.9415 | 0.9392 | 0.9903 |
0.0492 | 0.29 | 4500 | 0.0263 | 0.9512 | 0.9446 | 0.9479 | 0.9911 |
0.0372 | 0.32 | 5000 | 0.0223 | 0.9495 | 0.9497 | 0.9496 | 0.9915 |
0.0372 | 0.35 | 5500 | 0.0212 | 0.9530 | 0.9514 | 0.9522 | 0.9923 |
0.0308 | 0.39 | 6000 | 0.0177 | 0.9585 | 0.9560 | 0.9572 | 0.9933 |
0.0308 | 0.42 | 6500 | 0.0169 | 0.9619 | 0.9613 | 0.9616 | 0.9936 |
0.0261 | 0.45 | 7000 | 0.0140 | 0.9689 | 0.9662 | 0.9676 | 0.9951 |
0.0261 | 0.48 | 7500 | 0.0130 | 0.9652 | 0.9629 | 0.9641 | 0.9945 |
0.0214 | 0.51 | 8000 | 0.0127 | 0.9676 | 0.9635 | 0.9656 | 0.9953 |
0.0214 | 0.55 | 8500 | 0.0109 | 0.9714 | 0.9708 | 0.9711 | 0.9959 |
0.0177 | 0.58 | 9000 | 0.0103 | 0.9740 | 0.9727 | 0.9734 | 0.9961 |
0.0177 | 0.61 | 9500 | 0.0101 | 0.9768 | 0.9744 | 0.9756 | 0.9963 |
0.0159 | 0.64 | 10000 | 0.0098 | 0.9760 | 0.9741 | 0.9750 | 0.9965 |
Framework versions
- Transformers 4.24.0
- Pytorch 1.13.0+cu117
- Datasets 2.7.0
- Tokenizers 0.13.2