metadata
tags:
- unet
- pix2pix
- pytorch
library_name: pytorch
Pix2Pix UNet Model
Model Description
Custom UNet model for Pix2Pix image translation.
- Image Size: 1024
- Model Type: Big (1024)
Usage
import torch
from small_256_model import UNet as small_UNet
from big_1024_model import UNet as big_UNet
# Load the model
checkpoint = torch.load('model_weights.pth')
model = big_UNet() if checkpoint['model_config']['big'] else small_UNet()
model.load_state_dict(checkpoint['model_state_dict'])
model.eval()
Model Architecture
UNet(
(encoder): Sequential(
(0): Conv2d(3, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
(1): ReLU(inplace=True)
(2): Conv2d(64, 128, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
(3): ReLU(inplace=True)
(4): Conv2d(128, 256, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
(5): ReLU(inplace=True)
(6): Conv2d(256, 512, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
(7): ReLU(inplace=True)
(8): Conv2d(512, 1024, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
(9): ReLU(inplace=True)
)
(decoder): Sequential(
(0): ConvTranspose2d(1024, 512, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
(1): ReLU(inplace=True)
(2): ConvTranspose2d(512, 256, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
(3): ReLU(inplace=True)
(4): ConvTranspose2d(256, 128, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
(5): ReLU(inplace=True)
(6): ConvTranspose2d(128, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
(7): ReLU(inplace=True)
(8): ConvTranspose2d(64, 3, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
(9): Tanh()
)
)