kimsan0622's picture
Create README.md
c47d8f4
|
raw
history blame
2.75 kB
metadata
language:
  - ko
  - en
tags:
  - generated_from_trainer
datasets:
  - >-
    KETI-AIR/aihub_koenzh_food_translation,KETI-AIR/aihub_scitech_translation,KETI-AIR/aihub_scitech20_translation,KETI-AIR/aihub_socialtech20_translation,KETI-AIR/aihub_spoken_language_translation
metrics:
  - bleu
model-index:
  - name: ko2en_bidirection2
    results:
      - task:
          name: Translation
          type: translation
        dataset:
          name: >-
            KETI-AIR/aihub_koenzh_food_translation,KETI-AIR/aihub_scitech_translation,KETI-AIR/aihub_scitech20_translation,KETI-AIR/aihub_socialtech20_translation,KETI-AIR/aihub_spoken_language_translation
            koen,none,none,none,none
          type: >-
            KETI-AIR/aihub_koenzh_food_translation,KETI-AIR/aihub_scitech_translation,KETI-AIR/aihub_scitech20_translation,KETI-AIR/aihub_socialtech20_translation,KETI-AIR/aihub_spoken_language_translation
          args: koen,none,none,none,none
        metrics:
          - name: Bleu
            type: bleu
            value: 51.5949
license: apache-2.0
pipeline_tag: translation

ko2en_bidirection2

This model is a fine-tuned version of KETI-AIR/long-ke-t5-base on the KETI-AIR/aihub_koenzh_food_translation,KETI-AIR/aihub_scitech_translation,KETI-AIR/aihub_scitech20_translation,KETI-AIR/aihub_socialtech20_translation,KETI-AIR/aihub_spoken_language_translation koen,none,none,none,none dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5716
  • Bleu: 51.5949
  • Gen Len: 28.8348

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 8
  • total_train_batch_size: 128
  • total_eval_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3.0

Training results

Training Loss Epoch Step Validation Loss Bleu Gen Len
0.7004 1.0 187524 0.6461 28.0622 17.8368
0.6176 2.0 375048 0.5967 29.3033 17.8281
0.5642 3.0 562572 0.5716 30.0045 17.8366

Framework versions

  • Transformers 4.25.1
  • Pytorch 1.12.0
  • Datasets 2.8.0
  • Tokenizers 0.13.2