SentenceTransformer based on klue/roberta-base
This is a sentence-transformers model finetuned from klue/roberta-base. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: klue/roberta-base
- Maximum Sequence Length: 128 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: RobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'딱딱한 모자를 쓴 남자가 건물 프레임 앞에 주차된 빨간 트럭의 침대를 쳐다본다.',
'한 남자가 트럭을 보고 있다.',
'남자가 자고 있다.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Dataset:
sts-dev
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.865 |
spearman_cosine | 0.8668 |
pearson_manhattan | 0.8558 |
spearman_manhattan | 0.8607 |
pearson_euclidean | 0.8562 |
spearman_euclidean | 0.8613 |
pearson_dot | 0.8302 |
spearman_dot | 0.8276 |
pearson_max | 0.865 |
spearman_max | 0.8668 |
Training Details
Training Datasets
Unnamed Dataset
- Size: 568,640 training samples
- Columns:
sentence_0
,sentence_1
, andsentence_2
- Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 sentence_2 type string string string details - min: 4 tokens
- mean: 19.21 tokens
- max: 128 tokens
- min: 3 tokens
- mean: 18.29 tokens
- max: 93 tokens
- min: 4 tokens
- mean: 14.61 tokens
- max: 57 tokens
- Samples:
sentence_0 sentence_1 sentence_2 발생 부하가 함께 5% 적습니다.
발생 부하의 5% 감소와 함께 11.
발생 부하가 5% 증가합니다.
어떤 행사를 위해 음식과 옷을 배급하는 여성들.
여성들은 음식과 옷을 나눠줌으로써 난민들을 돕고 있다.
여자들이 사막에서 오토바이를 운전하고 있다.
어린 아이들은 그 지식을 얻을 필요가 있다.
응, 우리 젊은이들 중 많은 사람들이 그걸 배워야 할 것 같아.
젊은 사람들은 배울 필요가 없다.
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Unnamed Dataset
- Size: 5,777 training samples
- Columns:
sentence_0
,sentence_1
, andlabel
- Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 label type string string float details - min: 3 tokens
- mean: 17.61 tokens
- max: 65 tokens
- min: 3 tokens
- mean: 17.66 tokens
- max: 76 tokens
- min: 0.0
- mean: 0.54
- max: 1.0
- Samples:
sentence_0 sentence_1 label 몰디브 대통령이 경찰의 반란 이후 사임하고, 시위
몰디브 대통령이 몇 주 동안의 시위 끝에 그만두다.
0.6799999999999999
사자가 밀폐된 지역을 걷고 있다.
사자가 주위를 돌아다니고 있다.
0.52
한 소년이 노래를 부르고 피아노를 치고 있다.
한 소년이 피아노를 치고 있다.
0.6
- Loss:
CosineSimilarityLoss
with these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsnum_train_epochs
: 5batch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 8per_device_eval_batch_size
: 8per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1num_train_epochs
: 5max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falsebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: round_robin
Training Logs
Epoch | Step | Training Loss | sts-dev_spearman_max |
---|---|---|---|
0.3458 | 500 | 0.4123 | - |
0.6916 | 1000 | 0.3009 | 0.8365 |
1.0007 | 1447 | - | 0.8610 |
1.0367 | 1500 | 0.259 | - |
1.3824 | 2000 | 0.1301 | 0.8580 |
1.7282 | 2500 | 0.0898 | - |
2.0007 | 2894 | - | 0.8668 |
Framework Versions
- Python: 3.11.9
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.2.2+cu121
- Accelerate: 0.31.0
- Datasets: 2.20.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 15
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for KYUNGHYUN9/ko-sroberta-itos-training-example_v0.02
Base model
klue/roberta-baseEvaluation results
- Pearson Cosine on sts devself-reported0.865
- Spearman Cosine on sts devself-reported0.867
- Pearson Manhattan on sts devself-reported0.856
- Spearman Manhattan on sts devself-reported0.861
- Pearson Euclidean on sts devself-reported0.856
- Spearman Euclidean on sts devself-reported0.861
- Pearson Dot on sts devself-reported0.830
- Spearman Dot on sts devself-reported0.828
- Pearson Max on sts devself-reported0.865
- Spearman Max on sts devself-reported0.867